OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1126–1131

Thermal effects on bipartite and multipartite correlations in fiber coupled cavity arrays

Jian-Song Zhang and Ai-Xi Chen  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1126-1131 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the thermal influence of fibers on the dynamics of bipartite and multipartite correlations in fiber coupled cavity arrays where each cavity is resonantly coupled to a two-level atom. The atom-cavity systems connected by fibers can be considered as polaritonic qubits. We first derive a master equation to describe the evolution of the atom-cavity systems. The bipartite (multipartite) correlations are measured by concurrence and discord (spin squeezing). Then, we solve the master equation numerically and study the thermal effects on the concurrence, discord, and spin squeezing of the qubits. On the one hand, at zero temperature, there are steady state bipartite and multipartite correlations. On the other hand, the thermal fluctuations of a fiber may block the generation of entanglement of two qubits connected directly by the fiber, while the discord can be generated and stored for a long time. This thermal-induced blockade effects of bipartite correlations may be useful for quantum information processing. The bipartite correlations of a longer chain of qubits is more robust than a shorter one in the presence of thermal fluctuations.

© 2014 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: January 14, 2014
Revised Manuscript: March 18, 2014
Manuscript Accepted: March 23, 2014
Published: April 21, 2014

Jian-Song Zhang and Ai-Xi Chen, "Thermal effects on bipartite and multipartite correlations in fiber coupled cavity arrays," J. Opt. Soc. Am. B 31, 1126-1131 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2007).
  3. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004). [CrossRef]
  4. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science (London) 323, 598–601 (2009). [CrossRef]
  5. A. R. P. Rau, M. Ali, and G. Alber, “Hastening, delaying, or averting sudden death of quantum entanglement,” Europhys. Lett. 82, 40002 (2008). [CrossRef]
  6. Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996). [CrossRef]
  7. Y. Wu, X. Yang, and Y. Xiao, “Analytical method for Yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200 (2001). [CrossRef]
  8. J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283–288 (2009). [CrossRef]
  9. J. S. Zhang, A. X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” J. Phys. B 43, 025501 (2010).
  10. J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).
  11. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999). [CrossRef]
  12. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005). [CrossRef]
  13. J. Niset and N. J. Cerf, “Multipartite nonlocality without entanglement in many dimensions,” Phys. Rev. A 74, 052103 (2006). [CrossRef]
  14. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012). [CrossRef]
  15. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002). [CrossRef]
  16. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001). [CrossRef]
  17. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999). [CrossRef]
  18. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014 (2000). [CrossRef]
  19. A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005). [CrossRef]
  20. A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007). [CrossRef]
  21. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008). [CrossRef]
  22. R. Dillenschneider, “Quantum discord and quantum phase transition in spin chains,” Phys. Rev. B 78, 224413 (2008).
  23. M. S. Sarandy, “Classical correlation and quantum discord in critical systems,” Phys. Rev. A 80, 022108 (2009). [CrossRef]
  24. J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A 43, 045305 (2010).
  25. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008). [CrossRef]
  26. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010). [CrossRef]
  27. A. Auyuanet and L. Davidovich, “Quantum correlations as precursors of entanglement,” Phys. Rev. A 82, 032112 (2010). [CrossRef]
  28. Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010). [CrossRef]
  29. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009). [CrossRef]
  30. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  31. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007). [CrossRef]
  32. J. Li, J. Zou, and B. Shao, “Quantum information processing in an array of fiber coupled cavities,” Commun. Theor. Phys. 53, 764–770 (2010). [CrossRef]
  33. R. O. Umucalalar and I. Carusotto, “Fractional quantum Hall states of photons in an array of dissipative coupled cavities,” Phys. Rev. Lett. 108, 206809 (2012). [CrossRef]
  34. F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012). [CrossRef]
  35. I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012). [CrossRef]
  36. J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013). [CrossRef]
  37. K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013). [CrossRef]
  38. L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011). [CrossRef]
  39. D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009). [CrossRef]
  40. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  41. M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993). [CrossRef]
  42. J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011). [CrossRef]
  43. Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008). [CrossRef]
  44. M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited