OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1137–1144

Physical, chemical, and optical properties of Er3+-doped low Al(PO3)3/Al(H2PO4)3 modified fluoroaluminate glasses for 2.7  μm application

Feifei Huang, Weiwei Li, Lili Hu, and Danping Chen  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1137-1144 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001137


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluoroaluminophosphate glasses with various content of metaphosphate Al ( PO 3 ) 3 or dihydric phosphate Al ( H 2 PO 4 ) 3 were prepared, respectively, to study the change in physical, chemical, and optical properties of glasses for 2.7 μm application. The glass forming ability, thermal ability, and structural properties were investigated along with the Judd–Ofelt parameters. Absorption and emission cross sections were discussed based on the absorption and emission spectra. The glass forming ability and chemical stability were enhanced by introducing metaphosphate [ Al ( PO 3 ) 3 ] or dihydric phosphate [ Al ( H 2 PO 4 ) 3 ] into the fluoroaluminate glass. The density decreased with the introduction of increased phosphate composition, while the refractive index increased. The absorption coefficient of OH at about 3 μm dropped noticeably when Al ( PO 3 ) 3 / Al ( H 2 PO 4 ) 3 modified the fluoroaluminate glasses and an enhanced 2.7 μm emission was observed with an optimal content of phosphate composition. These results indicate that these fluoroaluminophosphate glasses with low metaphosphate Al ( PO 3 ) 3 or dihydric phosphate Al ( H 2 PO 4 ) 3 composition are promising candidates for 2.7 μm application.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3380) Lasers and laser optics : Laser materials
(260.0260) Physical optics : Physical optics
(260.2510) Physical optics : Fluorescence
(260.3060) Physical optics : Infrared
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Physical Optics

History
Original Manuscript: February 13, 2014
Manuscript Accepted: March 24, 2014
Published: April 22, 2014

Citation
Feifei Huang, Weiwei Li, Lili Hu, and Danping Chen, "Physical, chemical, and optical properties of Er3+-doped low Al(PO3)3/Al(H2PO4)3 modified fluoroaluminate glasses for 2.7  μm application," J. Opt. Soc. Am. B 31, 1137-1144 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Zhu and R. Jain, “10  W- level diode-pumped compact 2.78  μm ZBLAN fiber laser,” Opt. Lett. 32, 26–28 (2007). [CrossRef]
  2. C. Guo, D. Shen, J. Long, and F. Wang, “High-power and widely tunable Tm-doped fiber laser at 2  μm,” Chin. Opt. Lett. 10, 091406 (2012). [CrossRef]
  3. B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013). [CrossRef]
  4. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001). [CrossRef]
  5. T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011). [CrossRef]
  6. Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011). [CrossRef]
  7. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011). [CrossRef]
  8. M. Saad, “Flouride glass fibers,” in Photonics Society Summer Topical Meeting Series (2011), pp. 81–82.
  9. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24  W mid-infrared Er ZBLAN fiber laser,” Opt. Lett. 34, 3062–3064 (2009). [CrossRef]
  10. X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifers at the 2.7–2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008). [CrossRef]
  11. S. Takita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011). [CrossRef]
  12. G. H. Frischat, B. Hurber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glass in water,” J. Non-Cryst. Soilds 284, 105–109 (2001). [CrossRef]
  13. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010). [CrossRef]
  14. G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7  μm emission in Er3+-doped bismuth germanate glass pumped by 980  nm laser diode,” Chin. Opt. Lett. 10, 091601 (2012). [CrossRef]
  15. M. Naftaly, A. Jha, and E. R. Taylor, “Spectroscopic properties of Nd3+ in fluoroaluminate glasses for in 1.3  μm optical amplifier,” J. Non-Cryst. Soilds 256–257, 248–252 (1999). [CrossRef]
  16. J. L. Adam, N. Duhamel-Henry, and J. Y. Allain, “Blue and green up-conversion in (Yb3+, Tb3+) co-doped fluorophodphate glasses,” J. Non-Cryst. Solids 213–214, 245–250 (1997). [CrossRef]
  17. D. Dakui and M. Fuding, “Glass formation and crystallization in AlF3–YF3–BaF2–CaF2–MgF2,” J. Non-Cryst. Soilds 168, 275–280 (1994). [CrossRef]
  18. F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).
  19. M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009). [CrossRef]
  20. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2:7  μm emission from diode-pumped Er3+Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011). [CrossRef]
  21. R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Soilds 284, 55–60 (2001). [CrossRef]
  22. I. Yasui, H. Hagihara, and H. Inoue, “The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses,” J. Non-Cryst. Solids 140, 130–133 (1992). [CrossRef]
  23. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010). [CrossRef]
  24. R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011). [CrossRef]
  25. U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007). [CrossRef]
  26. X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013). [CrossRef]
  27. Y. Yan, A. J. Faber, and H. d. Waal, “Luminesence quenching by OH- groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995). [CrossRef]
  28. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+ codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011). [CrossRef]
  29. M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd-Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2 based glass,” J. Appl. Phys. 89, 4944–4950 (2001). [CrossRef]
  30. Y. Guo, M. Li, L. Hu, and J. Zhang, “Effect of fluorine ions on 2.7  μm emission in Er3+/Nd3+-codoped fluorotellurite glass,” J. Phys. Chem. 116, 5571–5576 (2012). [CrossRef]
  31. X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10, 101601 (2012). [CrossRef]
  32. H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhance mid-infrared emissions of Er3+ at 2.7  μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36, 1815–1817 (2011). [CrossRef]
  33. F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highy Er3+ doped ZrF4-based fluoride glasses for 2.7  μm laser materials,” Appl. Opt. 52, 1399–1403 (2013). [CrossRef]
  34. S. Xu, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Broadband 1.5  μm emission of erbium-doped TeO2-WO3-Nb2O5 glass for potential WDM amplifier,” Chin. Opt. Lett. 2, 106–108 (2004).
  35. T. Schweizer, D. W. Heward, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3  μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996). [CrossRef]
  36. S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992). [CrossRef]
  37. S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7  μm laser materials,” Chin. Opt. Lett. 10, 071603 (2012). [CrossRef]
  38. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995). [CrossRef]
  39. S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited