OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1145–1149

Wide-range and tunable diffraction management using 2D rectangular lattice photonic crystals

Xulin Lin, Xiaogang Zhang, Kan Yao, and Xunya Jiang  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1145-1149 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001145


View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose that 2D rectangular lattice photonic crystals composed of dielectric rods can be utilized for wide-range and tunable diffraction management. The control of diffraction for a normally incident beam is achieved by either properly choosing the operating frequency or changing the refractive index of the dielectric rods. The convergent, collimated, and divergent beam behaviors corresponding to a wide range of diffraction are clearly illustrated using FDTD simulations. The tunability of diffraction around the frequency of super-collimation is also analyzed and demonstrated.

© 2014 Optical Society of America

OCIS Codes
(050.5298) Diffraction and gratings : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: December 10, 2013
Revised Manuscript: February 27, 2014
Manuscript Accepted: March 14, 2014
Published: April 22, 2014

Citation
Xulin Lin, Xiaogang Zhang, Kan Yao, and Xunya Jiang, "Wide-range and tunable diffraction management using 2D rectangular lattice photonic crystals," J. Opt. Soc. Am. B 31, 1145-1149 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000). [CrossRef]
  2. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, “Self-focusing and defocusing in waveguide arrays,” Phys. Rev. Lett. 86, 3296–3299 (2001). [CrossRef]
  3. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 093901 (2002). [CrossRef]
  4. I. L. Garanovich, A. A. Sukhorukov, and Y. S. Kivshar, “Broadband diffraction management and self-collimation of white light in photonic lattices,” Phys. Rev. E 74, 066609 (2006). [CrossRef]
  5. J.-M. Moison, N. Belabas, J. A. Levenson, and C. Minot, “Light-propagation management in coupled waveguide arrays: quantitative experimental and theoretical assessment from band structures to functional patterns,” Phys. Rev. A 86, 033811 (2012). [CrossRef]
  6. M. J. Ablowitz and Z. H. Musslimani, “Discrete diffraction managed spatial solitons,” Phys. Rev. Lett. 87, 254102 (2001). [CrossRef]
  7. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003). [CrossRef]
  8. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003). [CrossRef]
  9. I. L. Garanovich, A. A. Sukhorukov, and Y. S. Kivshar, “Nonlinear diffusion and beam self-trapping in diffraction-managed waveguide arrays,” Opt. Express 15, 9547–9552 (2007). [CrossRef]
  10. Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012). [CrossRef]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  12. J. Sajeev, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  13. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef]
  14. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  15. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
  16. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
  17. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef]
  18. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  19. D. N. Chigrin, S. Enoch, C. Sotomayor Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203–1211 (2003). [CrossRef]
  20. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006). [CrossRef]
  21. X. Jiang, C. Zhou, X. Yu, S. Fan, M. Soljačić, and J. D. Joannopoulos, “The nonlinear effect from the interplay between the nonlinearity and the supercollimation of photonic crystal,” Appl. Phys. Lett. 91, 031105 (2007). [CrossRef]
  22. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007). [CrossRef]
  23. Z. Xu, B. Maes, X. Jiang, J. D. Joannopoulos, L. Torner, and M. Soljačić, “Nonlinear photonic crystals near the supercollimation point,” Opt. Lett. 33, 1762–1764 (2008). [CrossRef]
  24. K. Staliunas, O. Egorov, Y. S. Kivshar, and F. Lederer, “Bloch cavity solitons in nonlinear resonators with intracavity photonic crystals,” Phys. Rev. Lett. 101, 153903 (2008). [CrossRef]
  25. C. Etrich, R. Iliew, K. Staliunas, F. Lederer, and O. A. Egorov, “Ab initio dissipative solitons in an all-photonic crystal resonator,” Phys. Rev. A 84, 021808(R) (2011). [CrossRef]
  26. Y. Shen, P. G. Kevrekidis, N. Whitaker, and B. A. Malomed, “Spatial solitons under competing linear and nonlinear diffractions,” Phys. Rev. E 85, 026606 (2012). [CrossRef]
  27. X. Lin, X. Zhang, L. Chen, M. Soljačić, and X. Jiang, “Super-collimation with high frequency sensitivity in 2D photonic crystals induced by saddle-type van Hove singularities,” Opt. Express 21, 30140–30147 (2013). [CrossRef]
  28. M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
  29. T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Opt. Express 13, 10768–10776 (2005). [CrossRef]
  30. J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415 (1995). [CrossRef]
  31. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]
  32. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited