OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1150–1158

Polarization dependence of light transmission through individual nanoapertures in metal films

Kaan T. Gunay, Patrick W. Flanigan, Pei Liu, and Domenico Pacifici  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1150-1158 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001150


View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a systematic study of light transmission through individual nanoscale apertures (rectangular slits and circular holes) etched in a 300-nm-thick silver film. Transmission spectra were obtained as functions of aperture shape and size, as well as the wavelength and polarization state of the normally incident light beam. By varying the wavelength of the incident light in the 550–750 nm range and the characteristic dimensions of the apertures from 100nm to 10 μm, a universal behavior of light transmission is revealed. The role of incident polarization and aperture dimensions is investigated in detail, and a clear transition from the geometric regime of light transmission (large apertures) to the subwavelength regime is demonstrated experimentally. A quantitative analysis of the extinction coefficient is reported for rectangular slits, demonstrating that they can act as efficient linear polarizers with extinction ratios >1001. Finally, a method to convert far-field to near-field data is developed for circular apertures, revealing the contribution of surface plasmon polaritons to the decrease in light transmission for apertures below the cutoff condition.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 5, 2013
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 1, 2014
Published: April 23, 2014

Citation
Kaan T. Gunay, Patrick W. Flanigan, Pei Liu, and Domenico Pacifici, "Polarization dependence of light transmission through individual nanoapertures in metal films," J. Opt. Soc. Am. B 31, 1150-1158 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. M. Grimaldi, Physico Mathesis de Lumine, Coloribus, et Iride, Aliisque Annexis Libri Duo (Vittorio Bonati, 1665).
  2. J. W. Strutt (Lord Rayleigh), “On the passage of electric waves through tubes,” J. Phil. Mag. 43(261), 125–132 (1897).
  3. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  4. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  5. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35–100 (1954). [CrossRef]
  6. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. 4, 1970–1983 (1987). [CrossRef]
  7. R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107–118 (2001). [CrossRef]
  8. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002). [CrossRef]
  9. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005). [CrossRef]
  10. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef]
  11. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006). [CrossRef]
  12. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972). [CrossRef]
  13. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500  Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984). [CrossRef]
  14. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003). [CrossRef]
  15. A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]
  16. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). [CrossRef]
  17. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef]
  18. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef]
  19. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  20. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  21. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
  22. P. G. Huggard, M. Meyringer, A. Schilz, K. Goller, and W. Prettl, “Far-infrared bandpass filters from perforated metal screens,” Appl. Opt. 33, 39–41 (1994). [CrossRef]
  23. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  24. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100 (2000). [CrossRef]
  25. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef]
  26. C. Soennichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000). [CrossRef]
  27. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004). [CrossRef]
  28. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150–3165 (2005). [CrossRef]
  29. H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104–2108 (2006). [CrossRef]
  30. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222–9238 (2008). [CrossRef]
  31. F. van Beijnum, C. Retif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012). [CrossRef]
  32. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006). [CrossRef]
  33. K. J. Klein-Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  34. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. 7, S90–S96 (2005).
  35. K. L. van der Molen, K. J. Klein-Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005). [CrossRef]
  36. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008). [CrossRef]
  37. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012). [CrossRef]
  38. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004). [CrossRef]
  39. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267 (2007). [CrossRef]
  40. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef]
  41. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17, 12660–12667 (2009). [CrossRef]
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  43. J.-M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012). [CrossRef]
  44. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  45. D. M. Pozar, Microwave Engineering (Wiley, 1990).
  46. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).
  47. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  48. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited