OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1159–1164

Initiating self-focusing of beams carrying spatial phase singularities

Lyubomir Stoyanov, Georgi Maleshkov, Ivan Stefanov, and Alexander Dreischuh  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1159-1164 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we show both experimentally and by numerical simulations that the presence and evolution of a ring dark beam and/or an on-axis optical vortex nested on a bright background beam noticeably perturb the host background. In a photorefractive nonlinear medium (crystal SBN) these perturbations can initiate self-focusing of the background. By changing the dark ring radius and the presence of an optical vortex and keeping all other experimental parameters unchanged, we can control the dynamics at the initial stage of longitudinal self-focusing and the type of self-focusing structure (single peak or bright ring of variable radius). The presented results may appear especially important in experiments that involve cascaded nonlinear frequency mixing of singular beams, in which accelerated dark beam spreading is accompanied by self-focusing of certain portions of the perturbed host beam.

© 2014 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5330) Nonlinear optics : Photorefractive optics
(190.5940) Nonlinear optics : Self-action effects
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Nonlinear Optics

Original Manuscript: January 13, 2014
Revised Manuscript: March 1, 2014
Manuscript Accepted: March 25, 2014
Published: April 23, 2014

Lyubomir Stoyanov, Georgi Maleshkov, Ivan Stefanov, and Alexander Dreischuh, "Initiating self-focusing of beams carrying spatial phase singularities," J. Opt. Soc. Am. B 31, 1159-1164 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991). [CrossRef]
  2. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998). [CrossRef]
  3. D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997). [CrossRef]
  4. K. Besuchanov, A. Dreischuh, M. G. Schätzel, G. G. Paulus, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29, 1942–1944 (2004). [CrossRef]
  5. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre–Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett. 32, 2025–2027 (2007). [CrossRef]
  6. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005). [CrossRef]
  7. J. Strohaber, T. Scarborough, and C. J. G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors,” Appl. Opt. 46, 8583–8590 (2007). [CrossRef]
  8. K. Besuchanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, “Spatial phase dislocations in femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 26–35 (2006). [CrossRef]
  9. A. Schwarz and W. Rudolph, “Dispersion-compensating beam shaper for femtosecond optical vortex beams,” Opt. Lett. 33, 2970–2972 (2008). [CrossRef]
  10. G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31, 2042–2044 (2006). [CrossRef]
  11. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Królikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006). [CrossRef]
  12. D. Neshev, A. Dreischuh, V. Shvedov, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, “Observation of polychromatic vortex solitons,” Opt. Lett. 33, 1851–1853 (2008). [CrossRef]
  13. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17, 14517–14525 (2009). [CrossRef]
  14. D. Buccoliero, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33, 198–200 (2008). [CrossRef]
  15. P. Hansinger, A. Dreischuh, and G. G. Paulus, “Optical vortices in self-focusing Kerr nonlinear media,” Opt. Commun. 282, 3349–3355 (2009). [CrossRef]
  16. G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Self-focusing and filamentation of optical vortex beams: spatiotemporal analysis,” Proc. SPIE 7501, 75010G (2009). [CrossRef]
  17. G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Nonlinear beam steering by fractional vortex dipoles,” Phys. Rev. A 80, 053828 (2009). [CrossRef]
  18. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995). [CrossRef]
  19. W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997). [CrossRef]
  20. L. Torner and D. V. Petrov, “Splitting of light beams with spiral phase dislocations into solitons in bulk quadratic nonlinear media,” Electron. Lett. 33, 608 (1997). [CrossRef]
  21. L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006). [CrossRef]
  22. A. Vinçotte and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005). [CrossRef]
  23. A. V. Gorbach and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a Raman medium,” Phys. Rev. Lett. 98, 243601 (2007). [CrossRef]
  24. W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006). [CrossRef]
  25. Y. Zhang, Z. Nie, Y. Zhao, Ch. Li, R. Wang, J. Si, and M. Xiao, “Modulated vortex solitons of four-wave mixing,” Opt. Express 18, 10963–10972 (2010). [CrossRef]
  26. F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011). [CrossRef]
  27. M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012). [CrossRef]
  28. A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993). [CrossRef]
  29. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000). [CrossRef]
  30. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999). [CrossRef]
  31. G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992). [CrossRef]
  32. C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000). [CrossRef]
  33. P. Hansinger, A. Dreischuh, and G. G. Paulus, “Vortices in ultrashort laser pulses,” Appl. Phys. B 104, 561–567 (2011). [CrossRef]
  34. G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011). [CrossRef]
  35. A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999). [CrossRef]
  36. A. Zakery and A. Keshavarz, “Simulation of the incoherent interaction between two bright spatial photorefractive screening solitons in one and two dimensions,” J. Phys. D 37, 3409–3418 (2004). [CrossRef]
  37. M.-F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997). [CrossRef]
  38. W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998). [CrossRef]
  39. L. Janicijevic and S. Topuzoski, “Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings,” J. Opt. Soc. Am. A 25, 2659–2669 (2008). [CrossRef]
  40. D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997). [CrossRef]
  41. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999). [CrossRef]
  42. A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited