OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1174–1181

Effect of damping on Goos–Hänchen shift from weakly absorbing anisotropic metamaterials

Ruey-Lin Chern  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1174-1181 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1575 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of damping on the Goos–Hänchen (GH) shift from weakly absorbing anisotropic metamaterials is investigated. Explicit formulas of the GH shifts are derived and analyzed at three particular angles of incidence: critical angle, pseudo-Brewster angle, and grazing incidence, near which the reflection phases exhibit strong variations and large GH shifts are likely to occur. The damping in the anisotropic metamaterials may result in GH shifts not available in ordinary isotropic media. In particular, a larger GH shift can be associated with a larger rather than a smaller damping, and a small change of damping may even reverse the direction of the GH shift near the pseudo-Brewster angle. This feature is characterized by a parabolic relation determined by the complex components of the permittivity tensor. The GH shifts are also illustrated with the incidence of Gaussian beams based on Fourier integral formulation.

© 2014 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: January 10, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 1, 2014
Published: April 24, 2014

Ruey-Lin Chern, "Effect of damping on Goos–Hänchen shift from weakly absorbing anisotropic metamaterials," J. Opt. Soc. Am. B 31, 1174-1181 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hänchen, “A new and fundamental experiment on total reflection,” Ann. Phys. 436, 333–346 (1947). [CrossRef]
  2. F. Goos and H. Hänchen, “New measurement of the beam displacement at total reflection effect,” Ann. Phys. 440, 251–252 (1949). [CrossRef]
  3. K. Artmann, “Calculation of the lateral shift of totally reflected beams,” Ann. Phys. 437, 87–102 (1948). [CrossRef]
  4. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982). [CrossRef]
  5. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002). [CrossRef]
  6. C. K. Carniglia, “Correction to the theory of the Goos-Hänchen shift by Lotsch,” J. Opt. Soc. Am. 66, 1425 (1976). [CrossRef]
  7. P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 276, 206–208 (2007). [CrossRef]
  8. M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007). [CrossRef]
  9. B. A. Anicin, R. Fazlic, and M. Kopric, “Theoretical evidence for negative Goos-Hänchen shifts,” J. Phys. A 11, 1657–1662 (1978). [CrossRef]
  10. T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am. 61, 1397–1413 (1971). [CrossRef]
  11. M. Miri, A. Naqavi, A. Khavasi, K. Mehrany, S. Khorasani, and B. Rashidian, “Geometrical approach in physical understanding of the Goos-Hänchen shift in one- and two-dimensional periodic structures,” Opt. Lett. 33, 2940–2942 (2008). [CrossRef]
  12. C. Bonnet, D. Chauvat, O. Emile, F. Bretenaker, A. Le Floch, and L. Dutriaux, “Measurement of positive and negative Goos-Hänchen effects for metallic gratings near Wood anomalies,” Opt. Lett. 26, 666–668 (2001). [CrossRef]
  13. C.-F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903 (2003). [CrossRef]
  14. L.-G. Wang, H. Chen, and S.-Y. Zhu, “Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab,” Opt. Lett. 30, 2936–2938 (2005). [CrossRef]
  15. L.-G. Wang, H. Chen, N.-H. Liu, and S.-Y. Zhu, “Negative and positive lateral shift of a light beam reflected from a grounded slab,” Opt. Lett. 31, 1124–1126 (2006). [CrossRef]
  16. D. Felbacq, A. Moreau, and R. Smaâli, “Goos-Hänchen effect in the gaps of photonic crystals,” Opt. Lett. 28, 1633–1635 (2003). [CrossRef]
  17. L.-G. Wang and S.-Y. Zhu, “Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals,” Opt. Lett. 31, 101–103 (2006). [CrossRef]
  18. A. Puri and J. L. Birman, “Goos-Hänchen beam shift at total internal reflection with application to spatially dispersive media,” J. Opt. Soc. Am. A 3, 543–549 (1986). [CrossRef]
  19. I. J. Singh and V. P. Nayyar, “Lateral displacement of a light beam at a ferrite interface,” J. Appl. Phys. 69, 7820–7824 (1991). [CrossRef]
  20. W. Dong, L. Gao, and C.-W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res. 90, 255–268 (2009). [CrossRef]
  21. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002). [CrossRef]
  22. L.-G. Wang and S.-Y. Zhu, “Large negative lateral shifts from the Kretschmann-Raether configuration with left-handed materials,” Appl. Phys. Lett. 87, 221102 (2005). [CrossRef]
  23. L.-G. Wang and S.-Y. Zhu, “Large positive and negative Goos-Hänchen shifts from a weakly absorbing left-handed slab,” J. Appl. Phys. 98, 043522 (2005). [CrossRef]
  24. J. He, J. Yi, and S. He, “Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index,” Opt. Express 14, 3024–3029 (2006). [CrossRef]
  25. N.-H. Shen, J. Chen, Q.-Y. Wu, T. Lan, Y.-X. Fan, and H.-T. Wang, “Large lateral shift near pseudo-Brewster angle on reflection from a weakly absorbing double negative medium,” Opt. Express 14, 10574–10579 (2006). [CrossRef]
  26. T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos-Hänchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005). [CrossRef]
  27. Q. Cheng and T. J. Cui, “Lateral shifts of optical beams on the interface of anisotropic metamaterial,” J. Appl. Phys. 99, 066114 (2006). [CrossRef]
  28. W. Ding, L. Chen, and C.-H. Liang, “Numerical study of Goos-Hänchen shift on the surface of anisotropic left-handed materials,” Prog. Electromagn. Res. 2, 151–164 (2008). [CrossRef]
  29. F. Liu, J. Xu, G. Song, and Y. Yang, “Goos-Hänchen and Imbert-Fedorov shifts at the interface of ordinary dielectric and topological insulator,” J. Opt. Soc. Am. B 30, 1167–1172 (2013). [CrossRef]
  30. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1196 (1964). [CrossRef]
  31. K. W. Chiu and J. J. Quinn, “On the Goos-Hänchen effect: a simple example of a time delay scattering process,” Am. J. Phys. 40, 1847–1851 (1972). [CrossRef]
  32. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000). [CrossRef]
  33. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am. 67, 103–107 (1977). [CrossRef]
  34. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61, 586–594 (1971). [CrossRef]
  35. R.-L. Chern and P.-H. Chang, “Negative refraction and backward wave in pseudochiral mediums: illustrations of Gaussian beams,” Opt. Express 21, 2657–2666 (2013). [CrossRef]
  36. R.-L. Chern and P.-H. Chang, “Negative refraction and backward wave in chiral mediums: illustrations of Gaussian beams,” J. Appl. Phys. 113, 153504 (2013). [CrossRef]
  37. P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37, 259–263 (2003). [CrossRef]
  38. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009). [CrossRef]
  39. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  40. D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43, 377–407 (1978). [CrossRef]
  41. Y. Huang, B. Zhao, and L. Gao, “Goos-Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites,” J. Opt. Soc. Am. A 29, 1436–1444 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited