OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1182–1191

Modeling temperature-dependent shift of photoluminescence peak of In(Ga)As quantum dots with acoustic and optical phonons as two oscillators

D. Ghodsi Nahri and C. H. Raymond Ooi  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1182-1191 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001182


View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that all the available experimental data of temperature (T)-dependent shift of photoluminescence (PL) peak of In(Ga)As quantum dots (QDs) can be fitted successfully by using a two-oscillator model if and only if the whole temperature interval (0–300 K) is divided into a few parts (at most four parts), depending on dispersion degree of the PL peak from a monotonic behavior. Analysis of the numerical results show that excitons mostly interact (inelastically) with acoustic (AC) or optical (OP) phonons separately. Increasing QDs uniformity, by using some improved growth techniques, results in decreasing or removing the sigmoidal behavior, enhancing total AC phonon contribution and the maximum temperature that AC phonons contribute to the T-dependent redshift of the PL peak. Elevation of the zero bandgap (ZBG) energy up to a critical value about 1.4 eV, for In(Ga)As QDs grown using molecular-beam epitaxy, results in enhancement of QD symmetry and total OP phonon contribution and decline of QDs uniformity and total AC phonon contribution, while a rollover happens for further increase of the ZBG. Therefore we find that the highest QD symmetry and the lowest exciton fine structure splitting correspond to this critical value of ZBG, in accordance with previous experimental results.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(250.0250) Optoelectronics : Optoelectronics
(250.5230) Optoelectronics : Photoluminescence
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: October 30, 2013
Manuscript Accepted: January 6, 2014
Published: April 25, 2014

Citation
D. Ghodsi Nahri and C. H. Raymond Ooi, "Modeling temperature-dependent shift of photoluminescence peak of In(Ga)As quantum dots with acoustic and optical phonons as two oscillators," J. Opt. Soc. Am. B 31, 1182-1191 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1182


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985). [CrossRef]
  2. D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993). [CrossRef]
  3. J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994). [CrossRef]
  4. D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,” Opt. Laser Technol. 44, 2436–2442 (2012). [CrossRef]
  5. D. Ghodsi Nahri, “Investigation of the effects of nonlinear optical gain and thermal carrier excitation on characteristics of self-assembled quantum-dot lasers,” Opt. Express 20, 14754–14768 (2012). [CrossRef]
  6. D. Ghodsi Nahri, “Analysis of dynamic, modulation, and output power properties of self-assembled quantum dot lasers,” Laser Phys. Lett. 9, 682–690 (2012). [CrossRef]
  7. M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008). [CrossRef]
  8. X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190  K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007). [CrossRef]
  9. A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010). [CrossRef]
  10. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000). [CrossRef]
  11. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000). [CrossRef]
  12. R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012). [CrossRef]
  13. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010). [CrossRef]
  14. J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010). [CrossRef]
  15. P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001). [CrossRef]
  16. J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013). [CrossRef]
  17. J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]
  18. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef]
  19. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967). [CrossRef]
  20. Y. P. Varshni, “Temperature dependence of the elastic constants,” Phys. Rev. B 2, 3952–3958 (1970). [CrossRef]
  21. H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951). [CrossRef]
  22. H. Y. Fan, Photon-Electron Interaction, Crystals Without Fields (Springer, 1967), p. 134.
  23. L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30, 1979–1991 (1984). [CrossRef]
  24. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2927 (1991). [CrossRef]
  25. R. Pässler, “Alternative analytical descriptions of the temperature dependence of the energy gap in cadmium sulfide,” Phys. Status Solidi B 193, 135–144 (1996). [CrossRef]
  26. R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Status Solidi B 200, 155–172 (1997). [CrossRef]
  27. R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Status Solidi B 216, 975–1007 (1999). [CrossRef]
  28. R. Pässler, “Moderate phonon dispersion shown by the temperature dependence of fundamental band gaps of various elemental and binary semiconductors including wide-band gap materials,” Appl. Phys. 88, 2570–2577 (2000). [CrossRef]
  29. R. Pässler, “Temperature dependence of fundamental band gaps in group IV, III–V, and II–VI materials via a two-oscillator model,” Appl. Phys. 89, 6235–6240 (2001). [CrossRef]
  30. R. Pässler, “Dispersion-related description of temperature dependencies of band gaps in semiconductors,” Phys. Rev. B 66, 085201 (2002). [CrossRef]
  31. R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors,” Phys. Status Solidi B 236, 710–728 (2003). [CrossRef]
  32. P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003). [CrossRef]
  33. J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008). [CrossRef]
  34. B. Ullrich, X. Y. Xiao, and G. J. Brown, “Photoluminescence of PbS quantum dots on semi-insulating GaAs,” Appl. Phys. 108, 013525 (2010). [CrossRef]
  35. I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999). [CrossRef]
  36. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999). [CrossRef]
  37. H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011). [CrossRef]
  38. Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005). [CrossRef]
  39. G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005). [CrossRef]
  40. X. Lu, J. Vaillancourt, and H. Wen, “Temperature-dependent energy gap variation in InAs/GaAs quantum dots,” Appl. Phys. Lett. 96, 173105 (2010). [CrossRef]
  41. I. Yeo, J. D. Song, and J. Lee, “Temperature-dependent energy band gap variation in self-organized InAs quantum dots,” Appl. Phys. Lett. 99, 151909 (2011). [CrossRef]
  42. Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996). [CrossRef]
  43. N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006). [CrossRef]
  44. S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002). [CrossRef]
  45. A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999). [CrossRef]
  46. Semiconductors on NSM: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ .
  47. H. T. O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (New Series, Group III, Springer, 1982–89), Vol. 17a/b and 22a.
  48. R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000). [CrossRef]
  49. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999). [CrossRef]
  50. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997). [CrossRef]
  51. E. A. Muljarov and R. Zimmermann, “Dephasing in quantum dots: quadratic coupling to acoustic phonons,” Phys. Rev. Lett. 93, 237401 (2004). [CrossRef]
  52. P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef]
  53. A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000). [CrossRef]
  54. T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638–2652 (1999). [CrossRef]
  55. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987). [CrossRef]
  56. P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005). [CrossRef]
  57. L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001). [CrossRef]
  58. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007). [CrossRef]
  59. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996). [CrossRef]
  60. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006). [CrossRef]
  61. R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005). [CrossRef]
  62. R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996). [CrossRef]
  63. E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited