OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1182–1191

Modeling temperature-dependent shift of photoluminescence peak of In(Ga)As quantum dots with acoustic and optical phonons as two oscillators

D. Ghodsi Nahri and C. H. Raymond Ooi  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1182-1191 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001182


View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that all the available experimental data of temperature (T)-dependent shift of photoluminescence (PL) peak of In(Ga)As quantum dots (QDs) can be fitted successfully by using a two-oscillator model if and only if the whole temperature interval (0–300 K) is divided into a few parts (at most four parts), depending on dispersion degree of the PL peak from a monotonic behavior. Analysis of the numerical results show that excitons mostly interact (inelastically) with acoustic (AC) or optical (OP) phonons separately. Increasing QDs uniformity, by using some improved growth techniques, results in decreasing or removing the sigmoidal behavior, enhancing total AC phonon contribution and the maximum temperature that AC phonons contribute to the T-dependent redshift of the PL peak. Elevation of the zero bandgap (ZBG) energy up to a critical value about 1.4 eV, for In(Ga)As QDs grown using molecular-beam epitaxy, results in enhancement of QD symmetry and total OP phonon contribution and decline of QDs uniformity and total AC phonon contribution, while a rollover happens for further increase of the ZBG. Therefore we find that the highest QD symmetry and the lowest exciton fine structure splitting correspond to this critical value of ZBG, in accordance with previous experimental results.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(250.0250) Optoelectronics : Optoelectronics
(250.5230) Optoelectronics : Photoluminescence
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: October 30, 2013
Manuscript Accepted: January 6, 2014
Published: April 25, 2014

Citation
D. Ghodsi Nahri and C. H. Raymond Ooi, "Modeling temperature-dependent shift of photoluminescence peak of In(Ga)As quantum dots with acoustic and optical phonons as two oscillators," J. Opt. Soc. Am. B 31, 1182-1191 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1182

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited