OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1211–1216

Wide-incident-angle chromatic polarized transmission on trilayer silver/dielectric nanowire gratings

Shu Sun, Zhicheng Ye, Lindong Guo, and Nanling Sun  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1211-1216 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001211


View Full Text Article

Enhanced HTML    Acrobat PDF (902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Subwavelength gratings consisting of three layers with periodic structures are investigated. Contrary to the conclusions of many previous works that the transmittance of transverse magnetic (TM) light is higher than that of transverse electric (TE) light over the entire visible range, the transmittance is flipped in the short-wavelength regime, due to localized surface plasmon enhanced absorption of TM light by silver nanowires, while the converse holds in the longer-wavelength region because of the plasmonic waveguiding and cutoff effect of the metal–insulator–metal slits, which enhance TM transmission and prohibit TE propagation, respectively. Thus chromatic polarizations are rendered. Due to their nonresonant character, the spectral responses of the gratings vary little in a wide incident angle range. This work reveals a novel mechanism for fabricating integrated color filters and polarizers conveniently, which has broad applications in LCDs and CMOS sensors.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(160.4236) Materials : Nanomaterials
(130.7408) Integrated optics : Wavelength filtering devices
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Optical Devices

History
Original Manuscript: February 14, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 1, 2014
Published: April 30, 2014

Citation
Shu Sun, Zhicheng Ye, Lindong Guo, and Nanling Sun, "Wide-incident-angle chromatic polarized transmission on trilayer silver/dielectric nanowire gratings," J. Opt. Soc. Am. B 31, 1211-1216 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999). [CrossRef]
  2. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).
  4. V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.
  5. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006). [CrossRef]
  6. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
  8. L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  9. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005). [CrossRef]
  10. T. J. Constant, T. S. Taphouse, H. J. Rance, S. C. Kitson, A. P. Hibbins, and J. R. Sambles, “Surface plasmons on zig-zag gratings,” Opt. Express 20, 23921–23926 (2012). [CrossRef]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  12. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005). [CrossRef]
  13. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003). [CrossRef]
  14. J. Yamauchi, K. Sumida, and H. Nakano, “A TM-pass/TE-stop polarizer consisting of a metal film sandwiched with dielectric gratings,” in Proceedings of the 10th International Symposium on Contemporary Photonics Technology, Tokyo, Japan (2007), Vol. G-15, pp. 93–94.
  15. Y. Wakabayashi, J. Yamauchi, and H. Nakano, “A TM-pass/TE-stop polarizer based on a surface plasmon resonance,” Adv. Optoelectron. 2011, 867271 (2011). [CrossRef]
  16. T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
  17. Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18, 5344–5349 (2010). [CrossRef]
  18. Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013). [CrossRef]
  19. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996). [CrossRef]
  20. Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013). [CrossRef]
  21. S. T. Peng, “Rigorous formulation of scattering and guidance by dielectric grating waveguides: general case of oblique incidence,” J. Opt. Soc. Am. A 6, 1869–1883 (1989). [CrossRef]
  22. N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, “Diffraction of plane waves incident on a grated dielectric slab: an entire domain integral equation analysis,” Radio Sci. 42, RS6S22 (2007). [CrossRef]
  23. A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004). [CrossRef]
  24. S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express 14, 216–221 (2006). [CrossRef]
  25. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  26. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006). [CrossRef]
  27. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited