OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 963–971

Theoretical and numerical investigation of filament onset distance in atmospheric turbulence

J. Peñano, B. Hafizi, A. Ting, and M. Helle  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 963-971 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000963


View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze and simulate the propagation of laser beams with powers larger than the nonlinear self-focusing power through atmospheric turbulence. Turbulence-induced filamentation is theoretically described in terms of whole-beam self-focusing and transverse modulational instability. We describe a numerical simulation method to model nonlinear focusing in turbulence. We find good agreement between our simulation and a previously published laboratory-scale experiment. Simulations are then performed to calculate probability distributions for filament onset and wander over kilometer distances, and are compared with theory. The theoretical model can be made to agree with the simulations for physically meaningful choices of a few fitting parameters. We also examine the use of focusing optics to control filamentation range of modulationally unstable beams.

© 2014 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(190.3270) Nonlinear optics : Kerr effect

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 5, 2013
Revised Manuscript: February 24, 2014
Manuscript Accepted: March 3, 2014
Published: April 8, 2014

Citation
J. Peñano, B. Hafizi, A. Ting, and M. Helle, "Theoretical and numerical investigation of filament onset distance in atmospheric turbulence," J. Opt. Soc. Am. B 31, 963-971 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-963

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited