OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 963–971

Theoretical and numerical investigation of filament onset distance in atmospheric turbulence

J. Peñano, B. Hafizi, A. Ting, and M. Helle  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 963-971 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze and simulate the propagation of laser beams with powers larger than the nonlinear self-focusing power through atmospheric turbulence. Turbulence-induced filamentation is theoretically described in terms of whole-beam self-focusing and transverse modulational instability. We describe a numerical simulation method to model nonlinear focusing in turbulence. We find good agreement between our simulation and a previously published laboratory-scale experiment. Simulations are then performed to calculate probability distributions for filament onset and wander over kilometer distances, and are compared with theory. The theoretical model can be made to agree with the simulations for physically meaningful choices of a few fitting parameters. We also examine the use of focusing optics to control filamentation range of modulationally unstable beams.

© 2014 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(190.3270) Nonlinear optics : Kerr effect

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: December 5, 2013
Revised Manuscript: February 24, 2014
Manuscript Accepted: March 3, 2014
Published: April 8, 2014

J. Peñano, B. Hafizi, A. Ting, and M. Helle, "Theoretical and numerical investigation of filament onset distance in atmospheric turbulence," J. Opt. Soc. Am. B 31, 963-971 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003). [CrossRef]
  2. A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, and G. Rubel, “Remote atmospheric breakdown for standoff detection by using an intense short laser pulse,” Appl. Opt. 44, 5315–5320 (2005). [CrossRef]
  3. P. Sprangle, B. Hafizi, H. Milchberg, G. Nusinovich, and A. Zigler, “Active remote detection of radioactivity based on electromagnetic signatures,” Phys. Plasmas 21, 013103 (2014). [CrossRef]
  4. G. Franssen, H. Schleijpen, J. Van den Heuvel, H. Buersing, B. Eberle, and D. Walter, “Femtosecond lasers for countermeasure applications,” Proc. SPIE 7483, 748309 (2009). [CrossRef]
  5. J. Biegert, J.-C. Diels, and P. W. Milonni, “Bichromatic two-photon coherent excitation of sodium to provide a dual-wavelength guidestar,” Opt. Lett. 25, 683–685 (2000). [CrossRef]
  6. P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002). [CrossRef]
  7. J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas 11, 2865–2874 (2004). [CrossRef]
  8. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001), Vol. PM99.
  9. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005), Vol. PM152.
  10. F. G. Smith, ed., The Infrared and Electro-Optical Systems Handbook (SPIE, 1993), Vol. 2.
  11. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  12. V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere,” Quantum Electron. 29, 911 (1999). [CrossRef]
  13. S. Chin, A. Talebpour, J. Yang, S. Petit, V. Kandidov, O. Kosareva, and M. Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002). [CrossRef]
  14. R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J.-P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006). [CrossRef]
  15. R. Salame, N. Lascoux, E. Salmon, R. Ackermann, J. Kasparian, and J.-P. Wolf, “Propagation of laser filaments through an extended turbulent region,” Appl. Phys. Lett. 91, 171106 (2007). [CrossRef]
  16. A. Houard, M. Franco, B. Prade, A. Durécu, L. Lombard, P. Bourdon, O. Vasseur, B. Fleury, C. Robert, V. Michau, A. Couairon, and A. Mysyrowicz, “Femtosecond filamentation in turbulent air,” Phys. Rev. A 78, 033804 (2008). [CrossRef]
  17. G. Fibich, S. Eisenmann, B. Ilan, Y. Erlich, M. Fraenkel, Z. Henis, A. Gaeta, and A. Zigler, “Self-focusing distance of very high power laser pulses,” Opt. Express 13, 5897–5903 (2005). [CrossRef]
  18. P. Sprangle, A. Ting, J. Penano, R. Fischer, and B. Hafizi, “Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications,” IEEE J. Quantum Electron. 45, 138–148 (2009). [CrossRef]
  19. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307 (1966).
  20. G. P. Agrawal, “Transverse modulation instability of copropagating optical beams in nonlinear Kerr media,” J. Opt. Soc. Am. B 7, 1072–1078 (1990). [CrossRef]
  21. R. Boyd, Nonlinear Optics (Academic, 2003).
  22. J. A. Fleck, J. Morris, and M. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  23. J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef]
  24. W. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995). [CrossRef]
  25. R. G. Buser, “Interferometric determination of the distance dependence of the phase structure function for near-ground horizontal propagation at 6328 å,” J. Opt. Soc. Am. 61, 488–491 (1971). [CrossRef]
  26. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995). [CrossRef]
  27. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited