OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 972–979

Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel. part 1: theory

Parminder S. Bhatia  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 972-979 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000972


View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theory of an experimentally feasible four-partite scheme for splitting and open-destination teleportation of an arbitrary two-qubit state is presented. In this scheme, the quantum channel is provided by a pair of four-qubit generalized (G) Bell-states, which are decomposable. We show that not all possible distributions of entangled qubits to four communicating parties result in successful open-destination teleportation. We theoretically prove that two Bell-state measurements performed by a sender result in splitting, distributing, and locking the two-qubit state among three different receivers. The complete details of the procedure for unlocking the shared two-qubit state and eventually regenerating it at the location of any one of the three receiving stations is theoretically analyzed. This unlocking and regeneration procedure consists of local operations and classical communication (LOCC) performed by the remaining two receivers.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 4, 2013
Revised Manuscript: December 16, 2013
Manuscript Accepted: February 27, 2014
Published: April 8, 2014

Citation
Parminder S. Bhatia, "Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel. part 1: theory," J. Opt. Soc. Am. B 31, 972-979 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-972


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  2. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
  3. R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999). [CrossRef]
  4. A. Shamir, “How to share a secret,” Commun. ACM 22, 612–613 (1979). [CrossRef]
  5. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005). [CrossRef]
  6. D. Gottesman, “Theory of quantum secret sharing,” Phys. Rev. A 61, 042311 (2000). [CrossRef]
  7. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999). [CrossRef]
  8. Y. Li, K. Zhang, and K. Peng, “Multiparty secret sharing of quantum information based on entanglement swapping,” Phys. Lett. A 324, 420–424 (2004). [CrossRef]
  9. F.-G. Deng, X. Li, C. Li, P. Zhou, and H. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  10. X.-H. Li, P. Zhou, C. Li, H. Zhou, and F.-G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006). [CrossRef]
  11. F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006). [CrossRef]
  12. Z.-X. Man, Y.-J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHz states,” Eur. Phys. J. D 42, 333–340 (2007). [CrossRef]
  13. S. Muralidharan and P. Panigrahi, “Quantum-information splitting using multipartite cluster states,” Phys. Rev. A 78, 062333 (2008). [CrossRef]
  14. S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008). [CrossRef]
  15. S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinly entangled six-qubit state,” J. Phys. A 42, 115303 (2009). [CrossRef]
  16. Q. Zhang, Y. Zhan, L. Zhang, and P. Ma, “Schemes for splitting quantum information via tripartite entangled states,” Int. J. Theor. Phys. 48, 3331–3338 (2009). [CrossRef]
  17. W. Zhang, Y. M. Lin, X. F. Yin, and Z. J. Zhang, “Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs,” Eur. Phys. J. D 55, 189–195 (2009). [CrossRef]
  18. K. Hou, G.-H. Liu, X.-Y. Zhang, and S.-Q. Sheng, “An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states,” Quantum Inf. Process. 10, 463–473 (2011). [CrossRef]
  19. S. Muralidharan, S. Jain, and K. Panigrahi, “Splitting of quantum information using n-qubit linear cluster states,” Opt. Commun. 284, 1082–1085 (2011). [CrossRef]
  20. N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quantum Inf. Process. 10, 619–632 (2011). [CrossRef]
  21. W. Zhang, K.-W. Xiong, X.-Q. Zuo, and Z.-Y. Zhang, “Splitting unknown two-qubit pure or mixed state via one-dimensional six-qubit cluster state,” Opt. Commun. 293, 166–171 (2013). [CrossRef]
  22. G. Rigolin, “Superdense coding using multipartite states,” arXiv:quant-ph/0407193 (2004).
  23. G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005). [CrossRef]
  24. Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum state sharing of an arbitrary three-qubit state by using four sets of w-class states,” Opt. Commun. 284, 1457–1460 (2011). [CrossRef]
  25. P. S. Bhatia, “Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel-part II (experimental),” J. Opt. Soc. Am. B (submitted).
  26. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleportating an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  27. Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004). [CrossRef]
  28. W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001). [CrossRef]
  29. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
  30. C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005). [CrossRef]
  31. S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007). [CrossRef]
  32. Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006). [CrossRef]
  33. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  34. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  35. Z.-J. Zhang and C.-Y. Cheung, “Minimal classical communication and measurement complexity for quantum information splitting,” J. Phys. B 41, 015503 (2008).
  36. Y.-Y. Nie, Y.-H. Li, J.-C. Liu, and M.-H. Sang, “Quantum information splitting of an arbitrary three-qubit state using two four-qubit cluster states,” Quantum Inf. Process. 10, 297–305 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited