OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 980–986

Manipulation of fast light using photorefractive beam fanning

Alexander Grabar, Pierre Mathey, and Grégory Gadret  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 980-986 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light pulse group velocity manipulations due to the specific dispersion of a medium (so-called “slow” and “fast” light phenomena) can be obtained on the basis of several mechanisms. One of these techniques is two-wave mixing in a photorefractive crystal. This work presents a modification of this method, exploiting the strong beam fanning in Sb-doped Sn2P2S6 crystals. Our experimental results demonstrate a “fast light” behavior of Gaussian pulses transmitted through a Sn2P2S6:Sb sample. The phenomenon is due to the beam fanning (i.e., the self-diffraction of the incident beam on self-induced noisy photorefractive gratings) that ensures a significant depletion of the input beam. Due to the relatively fast photorefractive response of the Sn2P2S6:Sb crystals this depletion occurs with times in the range of 10–100 ms, depending on the beam intensity, and the “fast light” feature is observed. The temporal and amplitude characteristics of the output beam are measured in function of the intensity and polarization azimuth of the incident beam. Besides, a negative phase shift of the periodical output beam relative to a sinusoidal intensity-modulated input beam is also obtained experimentally. It is shown that the phase and amplitude relation between the input and output periodic signals are described by a simple analytical expression that takes into account the beam fanning strength (depletion factor) and its dynamics (depletion time constant). It is also demonstrated that the pulse advance (or phase shift of the modulated signal) can be regulated by the light polarization azimuth. The advantages of the proposed method are discussed.

© 2014 Optical Society of America

OCIS Codes
(160.2260) Materials : Ferroelectrics
(160.5320) Materials : Photorefractive materials
(190.0190) Nonlinear optics : Nonlinear optics
(260.2160) Physical optics : Energy transfer
(190.2055) Nonlinear optics : Dynamic gratings
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:

Original Manuscript: November 25, 2013
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 6, 2014
Published: April 8, 2014

Alexander Grabar, Pierre Mathey, and Grégory Gadret, "Manipulation of fast light using photorefractive beam fanning," J. Opt. Soc. Am. B 31, 980-986 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E. Wolf, ed. (Elsevier2002), Vol. 43, pp. 497–530.
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef]
  4. U. Bortolozzo, S. Residori, and J.-P. Huignard, “Slow-light through nonlinear wave-mixing in liquid crystal light-valves,” C. R. Phys. 10, 938–948 (2009). [CrossRef]
  5. U. Bortolozzo, S. Residori, and J. C. Howell, “Precision Doppler measurements with steep dispersion,” Opt. Lett. 38, 3107–3110 (2013). [CrossRef]
  6. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon. 2, 287–318 (2010). [CrossRef]
  7. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025  cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91, 083902 (2003). [CrossRef]
  8. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]
  9. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]
  11. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011). [CrossRef]
  12. S. Melle, O. G. Calderón, M. A. Antón, F. Carreño, and A. Egatz-Gómez, “Spectral hole burning in erbium-doped fibers for slow light,” J. Opt. Soc. Am. B 29, 2189–2198 (2012). [CrossRef]
  13. A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004). [CrossRef]
  14. B. Sturman, P. Mathey, and H.-R. Jauslin, “Slowdown and speedup of light pulses using the self-compensating photorefractive response,” J. Opt. Soc. Am. B 28, 347–351 (2011). [CrossRef]
  15. A. Shumelyuk and S. Odoulov, “Light pulse manipulation in Sn2P2S6,” J. Opt. 12, 104015 (2010). [CrossRef]
  16. F. Bo, G. Zhang, and J. Xu, “Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals,” Opt. Express 13, 8198–8203 (2005). [CrossRef]
  17. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).
  18. K. Shcherbin, P. Mathey, and G. Gadret, “Slow light with photorefractive four-wave mixing,” Phys. Rev. A 84, 063802 (2011). [CrossRef]
  19. K. Shcherbin, P. Mathey, G. Gadret, R. Guyard, H. R. Jauslin, and S. Odoulov, “Slowing down of light pulses using photorefractive four-wave mixing: nontrivial behavior with increasing coupling strength,” Phys. Rev. A 87, 033820 (2013). [CrossRef]
  20. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. A 72, 46–51 (1982). [CrossRef]
  21. M. Y. Goulkov, T. Granzow, U. Dorfler, T. Woike, M. Imlau, and R. Pankrath, “Study of beam-fanning hysteresis in photo- refractive SBN:Ce: light-induced and primary scattering as functions of polar structure,” Appl. Phys. B 76, 407–416 (2003). [CrossRef]
  22. G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Günter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995). [CrossRef]
  23. F. Bo, G. Zhang, and J. Xu, “Ultraslow Gaussian pulse propagation induced by a dispersive phase coupling in photorefractive bismuth silicon oxide crystals at room temperature,” Opt. Commun. 261, 349–352 (2006). [CrossRef]
  24. A. A. Grabar, M. I. Gurzan, I. V. Kedyk, I. M. Stoika, and Yu. M. Vysochanskii, “Optical properties and applications of photorefractive Sn2P2S6,” Ferroelectrics 257, 245–254 (2001). [CrossRef]
  25. A. Volkov, A. Shumelyuk, S. Odoulov, and M. Imlau, “Polarization structure of beam fanning in low-symmetry photorefractive crystals,” J. Opt. Soc. Am. B 30, 1102–1108 (2013). [CrossRef]
  26. M. J. Miller, G. L. Wood, and G. J. Salamo, “Photorefractive beam fanning optical limiter,” MRS Proc. 479, 193–198 (1997).
  27. H. Rehn, R. Kowarschik, and K. H. Ringhofer, “Beam-fanning novelty filter with enhanced dynamic phase resolution,” Appl. Opt. 34, 4907–4911 (1995). [CrossRef]
  28. T. Yoshida, A. Okamoto, Y. Takayama, and K. Sato, “Operable conditions of the beam-fanning novelty filter for the c axis and the incident angle,” Appl. Opt. 39, 5940–5948 (2000). [CrossRef]
  29. M. Snowbell, M. Horowitz, and B. Fischer, “Dynamics of multiple two-wave mixing and fanning in photorefractive materials,” J. Opt. Soc. Am. B 11, 1972–1982 (1994). [CrossRef]
  30. S. Residori, P. L. Ramazza, and M. Zhao, “Dynamics of beam fanning in Cu-doped KNSBN,” Opt. Commun. 102, 100–104 (1993). [CrossRef]
  31. A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications, P. Günter and J.-P. Huignard, eds. (Springer, 2006), pp. 327–359.
  32. I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, “Investigation of the dielectric, optical and photorefractive properties of Sb-doped Sn2P2S6 crystals,” Appl. Phys. B 92, 549–554 (2008). [CrossRef]
  33. R. Nitsche and P. Wild, “Crystal growth of metal-phosphorus-sulfur compounds by vapor transport,” Mater. Res. Bull. 5, 419–423 (1970). [CrossRef]
  34. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Gunter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003). [CrossRef]
  35. O. M. Shumelyuk, A. I. Hryhorashchuk, and S. G. Odoulov, “Optical forerunners in crystals with photorefractive dynamic gratings,” Ukr. J. Phys. 54, 33–37 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited