OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1232–1239

Coherence properties of coupled optomechanical cavities

T. Figueiredo Roque and A. Vidiella-Barranco  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. 1232-1239 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we investigate an optomechanical system consisting of two cavities coupled to the same mechanical resonator. We consider each cavity being weakly pumped as well as a small tunneling rate between the cavities. In such conditions, the system can be studied via quantum Langevin equations and the steady-state solution can be found perturbatively. In order to ensure that the approximations and methods used to study the system are suitable, the analytical results were compared to numerical results. We study the statistical properties of the cavity radiation fields and we show that depending on the values of the parameters of the system, it is possible to modify the spectrum of the cavities and enhance significantly the sub-Poissonian character of the cavity field.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Quantum Optics

Original Manuscript: January 24, 2014
Revised Manuscript: March 22, 2014
Manuscript Accepted: April 8, 2014
Published: May 2, 2014

T. Figueiredo Roque and A. Vidiella-Barranco, "Coherence properties of coupled optomechanical cavities," J. Opt. Soc. Am. B 31, 1232-1239 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. B. Braginsky and A. B. Manukin, “Ponderomotive effects of electromagnetic radiation,” Sov. Phys. J. Exp. Theor. Phys. 25, 653–655 (1967).
  2. V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, “Investigation of dissipative ponderomotive effects of electromagnetic radiation,” Sov. Phys. J. Exp. Theor. Phys. 31, 829–830 (1970).
  3. V. B. Braginsky, Measurement of Weak Forces in Physics Experiments (University of Chicago, 1977).
  4. C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, and S. Reynaud, “Quantum-noise reduction using a cavity with a movable mirror,” Phys. Rev. A 49, 1337–1343 (1994). [CrossRef]
  5. S. Mancini and P. Tombesi, “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49, 4055–4065 (1994). [CrossRef]
  6. K. Jacobs, P. Tombesi, M. J. Collett, and D. F. Walls, “Quantum-nondemolition measurement of photon number using radiation pressure,” Phys. Rev. A 49, 1961–1966 (1994). [CrossRef]
  7. M. Pinard, C. Fabre, and A. Heidmann, “Quantum-nondemolition measurement of light by a piezoelectric crystal,” Phys. Rev. A 51, 2443–2449 (1995). [CrossRef]
  8. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef]
  9. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006). [CrossRef]
  10. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006). [CrossRef]
  11. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef]
  12. J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101, 197203 (2008). [CrossRef]
  13. T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2009). [CrossRef]
  14. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011). [CrossRef]
  15. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef]
  16. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011). [CrossRef]
  17. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  18. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef]
  19. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]
  20. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002). [CrossRef]
  21. D. Vitali, S. Gigan, A. Ferreira, H. R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007). [CrossRef]
  22. S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175–4186 (1997). [CrossRef]
  23. S. Mancini, V. I. Man’ko, and P. Tombesi, “Ponderomotive control of quantum macroscopic coherence,” Phys. Rev. A 55, 3042–3050 (1997). [CrossRef]
  24. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011). [CrossRef]
  25. A. Kronwald, M. Ludwig, and F. Marquardt, “Full photon statistics of a light beam transmitted through an optomechanical system,” Phys. Rev. A 87, 013847 (2013). [CrossRef]
  26. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012). [CrossRef]
  27. L. Qiu, L. Gan, W. Ding, and Z.-Y. Li, “Single-photon generation by pulsed laser in optomechanical system via photon blockade effect,” J. Opt. Soc. Am. B 30, 1683–1687 (2013). [CrossRef]
  28. X.-W. Xu, Y.-J. Li, and Y.-X. Liu, “Photon-induced tunneling in optomechanical systems,” Phys. Rev. A 87, 025803 (2013). [CrossRef]
  29. A. Nunnenkamp, K. Borkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011). [CrossRef]
  30. M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett. 109, 063601 (2012). [CrossRef]
  31. S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007). [CrossRef]
  32. F. Brennecke, S. Ritter, T. Donner, and T. Esslinge, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008). [CrossRef]
  33. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef]
  34. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009). [CrossRef]
  35. T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1  GHz frequency,” Phys. Rev. Lett. 98, 123901 (2007). [CrossRef]
  36. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98, 113108 (2011). [CrossRef]
  37. L. Tian, “Adiabatic state conversion and pulse transmission in optomechanical systems,” Phys. Rev. Lett. 108, 153604 (2012). [CrossRef]
  38. Y.-D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012). [CrossRef]
  39. L. Tian, “Robust photon entanglement via quantum interference in optomechanical interfaces,” Phys. Rev. Lett. 110, 233602 (2013). [CrossRef]
  40. C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012). [CrossRef]
  41. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196–1206 (2012). [CrossRef]
  42. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon photon translator,” New J. Phys. 13, 013017 (2011). [CrossRef]
  43. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
  44. S. M. Tan, “A computational toolbox for quantum and atomic optics,” J. Opt. B 1, 424–432 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited