OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1240–1247

Refractive index switching based on loss controlling in a doped metamaterial slab

Hamed Sattari and Mostafa Sahrai  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. 1240-1247 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (838 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical refractive index switch is proposed based on coherent control of a doped double-negative metamaterial slab. By embedding the three-level atoms through the left-handed slab, the effective permittivity of the slab becomes a function of the doped atom’s susceptibility. Absorption properties manipulation of the doped atoms leads to active control over the total loss of the metamaterial slab. This way the refractive index of the slab can be switched between negative and positive by the change of the relative phase of the applied fields. This may offer active control over the transmission in a wide range from 0 to 0.58.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(270.1670) Quantum optics : Coherent optical effects
(160.3918) Materials : Metamaterials
(130.4815) Integrated optics : Optical switching devices

ToC Category:

Original Manuscript: January 6, 2014
Revised Manuscript: March 21, 2014
Manuscript Accepted: April 6, 2014
Published: May 2, 2014

Hamed Sattari and Mostafa Sahrai, "Refractive index switching based on loss controlling in a doped metamaterial slab," J. Opt. Soc. Am. B 31, 1240-1247 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε AND μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  3. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006). [CrossRef]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  5. W. Cai and V. M. Šalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  6. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010). [CrossRef]
  7. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005). [CrossRef]
  8. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31, 3022–3024 (2006). [CrossRef]
  9. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003). [CrossRef]
  10. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106–1115 (2006). [CrossRef]
  11. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007). [CrossRef]
  12. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007). [CrossRef]
  13. P. Kinsler and M. W. McCall, “Causality-based criteria for a negative refractive index must be used with care,” Phys. Rev. Lett. 101, 167401 (2008). [CrossRef]
  14. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). [CrossRef]
  15. J. M. Hamm, S. Wuestner, K. L. Tsakmakidis, and O. Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107, 167405 (2011). [CrossRef]
  16. Z. Huang, Th. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108, 187402 (2012). [CrossRef]
  17. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  18. O. A. Kocharovskaia and I. I. Khanin, “Coherent amplification of an ultrashort pulse in a three-level medium without population inversion,” Pis ma Zhurnal Eksperimental noi i Teoreticheskoi Fiziki 48, 581–584 (1988).
  19. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  20. A. G. Litvak and M. D. Tokman, “Electromagnetically induced transparency in ensembles of classical oscillators,” Phys. Rev. Lett. 88, 095003 (2002). [CrossRef]
  21. A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” arXiv preprint nlin/0506006 (2005).
  22. L.-G. Wang, H. Chen, and S.-Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E 70, 066602 (2004). [CrossRef]
  23. N. Liu, S.-Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002). [CrossRef]
  24. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008). [CrossRef]
  25. A. K. Popov, S. A. Myslivets, T. F. George, and V. M. Shalaev, “Four-wave mixing, quantum control, and compensating losses in doped negative-index photonic metamaterials,” Opt. Lett. 32, 3044–3046 (2007). [CrossRef]
  26. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  27. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2008).
  28. J.-H. Wu and J.-Y. Gao, “Phase control of light amplification without inversion in a Λ system with spontaneously generated coherence,” Phys. Rev. A 65, 063807 (2002). [CrossRef]
  29. J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992). [CrossRef]
  30. D. R. S. Smith, P. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  31. Th. Koschny, P. Markoš, E. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005). [CrossRef]
  32. P. Markoš and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003). [CrossRef]
  33. S. D. Gupta, R. Arun, and G. S. Agarwal, “Subluminal to superluminal propagation in a left-handed medium,” Phys. Rev. B 69, 113104 (2004). [CrossRef]
  34. J. Zhou, H. Luo, S. Wen, and Y. Zeng, “ABCD matrix formalism for propagation of Gaussian beam through left-handed material slab system,” Opt. Commun. 282, 2670–2675 (2009). [CrossRef]
  35. E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Brentenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, “Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency,” Phys. Rev. B 81, 144303 (2010).
  36. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett 95, 143601 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited