OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1248–1254

Divided-pulse compression with gas-filled hollow-core fiber for generation of high-energy few-cycle pulses

Ding Wang, Yuxin Leng, and Zhiyuan Huang  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. 1248-1254 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (779 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study theoretically a pulse compression method with gas-filled hollow-core fiber (HCF) based on pulse division. The input pulse is first divided temporally into a sequence of almost identical subpulses by birefringent optical elements that are designed to have nearly zero group delay dispersion. Then, these subpulses are coupled into gas-filled HCF for spectrum broadening independently. Last, the subpulses are recombined into one pulse by the birefringent elements and compressed temporally. This method is demonstrated to be suitable for compressing ultrafast pulses with energies far above the millijoule to few-cycle level. Several key issues on successfully implementing this method are analyzed quantitatively, and the limitations are also discussed.

© 2014 Optical Society of America

OCIS Codes
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Ultrafast Optics

Original Manuscript: January 21, 2014
Revised Manuscript: March 24, 2014
Manuscript Accepted: April 1, 2014
Published: May 6, 2014

Ding Wang, Yuxin Leng, and Zhiyuan Huang, "Divided-pulse compression with gas-filled hollow-core fiber for generation of high-energy few-cycle pulses," J. Opt. Soc. Am. B 31, 1248-1254 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004). [CrossRef]
  2. S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013). [CrossRef]
  3. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]
  4. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16  TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009). [CrossRef]
  5. A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and J. Biegert, “Simulation of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010). [CrossRef]
  6. F. Giambruno, C. Radier, G. Rey, and G. Cheriaux, “Design of a 10  PW (150  J/15  fs) peak power laser system with Ti:sapphire medium through spectral control,” Appl. Opt. 50, 2617–2621 (2011). [CrossRef]
  7. C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Broadband amplification by picosecond OPCPA in DKDP pumped at 515  nm,” Opt. Express 20, 4619–4629 (2012). [CrossRef]
  8. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010). [CrossRef]
  9. S. Zhou and F. W. Wise, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett. 32, 871–873 (2007). [CrossRef]
  10. L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier,” Opt. Lett. 37, 253–255 (2012). [CrossRef]
  11. Y. Zaouter, F. Guichard, L. Daniault, M. Hanna, F. Morin, C. Honninger, E. Mottay, F. Druon, and P. Georges, “Femtosecond fiber chirped- and divided-pulse amplification system,” Opt. Lett. 38, 106–108 (2013). [CrossRef]
  12. A. Klenke, M. Kienel, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, “Divided-pulse nonlinear compression,” Opt. Lett. 38, 4593–4595 (2013). [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  14. http://refractiveindex.info .
  15. R. Paschotta, www.rp-photonics.com/b_integral.html .
  16. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005). [CrossRef]
  17. C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001). [CrossRef]
  18. E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” AT&T Tech. J. 43, 1783–1809 (1964). [CrossRef]
  19. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007). [CrossRef]
  20. D. Wang and Y. Leng, “Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime,” Opt. Commun. 307, 17–24 (2013). [CrossRef]
  21. M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).
  22. M. Kienel, A. Klenke, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, “Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification,” Opt. Lett. 39, 1049–1052 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited