OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1255–1262

Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel. Part 2: experiment

Parminder S. Bhatia  »View Author Affiliations


JOSA B, Vol. 31, Issue 6, pp. 1255-1262 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001255


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Full detail of a proposed experiment required for implementing and verifying a theoretical scheme for four-partite splitting and open-destination teleportation of an arbitrary two-qubit photonic state is discussed. In this proposed experiment the quantum channel is provided by a pair of decomposable generalized (G) Bell states, which offer the experimental advantage that they can be very easily generated in photonic experiments. Our experiment is based on generating a two-qubit photonic state by ultrafast spontaneous parametric downconversion in nonlinear crystal and relies on Bell-state measurements, which in this experiment are performed by an optical Bell-state analyzer that can unambiguously determine all four Bell states. In this proposed experiment unitary transformation required at the destination station is implemented using a quantum control NOT gate. We finally show that in our four-partite optical system the two-qubit photonic state originally prepared at a sending station can be experimentally split and subsequently regenerated at any one of the three distinct receiving stations.

© 2014 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(320.2250) Ultrafast optics : Femtosecond phenomena
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 20, 2013
Manuscript Accepted: March 28, 2014
Published: May 7, 2014

Citation
Parminder S. Bhatia, "Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel. Part 2: experiment," J. Opt. Soc. Am. B 31, 1255-1262 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-6-1255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  2. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005). [CrossRef]
  3. S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008). [CrossRef]
  4. S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009). [CrossRef]
  5. P. S. Bhatia, “Experimental tripartite quantum state sharing and perfect teleportation of two-qubit photonic state using genuinely entangled multipartite states,” J. Opt. Soc. Am. B 31, 154–163 (2014). [CrossRef]
  6. P. S. Bhatia, “Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel. part 1: theory,” J. Opt. Soc. Am. B 31, 972–979 (2014). [CrossRef]
  7. G. Rigolin, “Superdense coding using multipartite states,” quant-ph/0407193 at ( http://xxx.lanl.gov ) (2004).
  8. G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005). [CrossRef]
  9. W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001). [CrossRef]
  10. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
  11. C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005). [CrossRef]
  12. S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007). [CrossRef]
  13. Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004). [CrossRef]
  14. Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006). [CrossRef]
  15. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  16. H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999). [CrossRef]
  17. I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008). [CrossRef]
  18. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002). [CrossRef]
  19. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008). [CrossRef]
  20. E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997). [CrossRef]
  21. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000). [CrossRef]
  22. S. Lloyd, M. S. Shahriar, and J. H. Shapiro, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001). [CrossRef]
  23. T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995). [CrossRef]
  24. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003). [CrossRef]
  25. W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009). [CrossRef]
  26. M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004). [CrossRef]
  27. C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000). [CrossRef]
  28. J. Preskill, “Battling decoherence: the fault-tolerant quantum computer,” Phys. Today 52(6), 24–30 (1999). [CrossRef]
  29. R. W. Boyd, Nonlinear Optics (Elsevier-Science, 2008).
  30. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  31. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  32. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by down-conversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001). [CrossRef]
  33. M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002). [CrossRef]
  34. Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001). [CrossRef]
  35. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).
  36. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  37. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  38. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004). [CrossRef]
  39. P. S. Bhatia, C. W. McCluskey, and J. W. Keto, “Calibration of a computer controlled precision wavemeter for use with pulsed lasers,” Appl. Opt. 38, 2486–2498 (1999). [CrossRef]
  40. P. S. Bhatia, J. P. Holder, and J. W. Keto, “Highly sensitive optically heterodyne, Raman-induced Kerr-effect spectrometer using pulsed lasers,” J. Opt. Soc. Am. B 14, 263–270 (1997). [CrossRef]
  41. P. S. Bhatia and J. W. Keto, “Pressure and power dependence of the optically heterodyne Raman-induced Kerr effect line shape,” Phys. Rev. A 59, 4045–4051 (1999). [CrossRef]
  42. M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93, 040504 (2004). [CrossRef]
  43. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited