OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1273–1281

Low-frequency photonic bands in square Mediterranean and hexagonal snowflake metallic structures

Kang Wang  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. 1273-1281 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the low frequency photonic band structures in square Mediterranean and hexagonal snowflake metallic structures, both constructed upon two sets of adjustable tiles. The band formation and evolution are comparatively investigated with respect to local resonances and their variations following the modulations of the tile sizes and shapes. We show that the lowest frequency bands are formed by s-like resonance modes sustained by the structure tiles, of which the contributions vary following local structure modulations, and, under certain conditions, the second bands (above the first photonic bandgaps) are formed by p-like modes sustained by the same tiles. The s and p bands can both be described in the framework of a tight-binding model, allowing band structure analyses in terms of relations between local resonance modes and their mutual correlations. In this schema, the plasma gaps and the first photonic bandgaps arise naturally from local structure patterns, which determine both the local resonance conditions and their correlation relations.

© 2014 Optical Society of America

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: March 4, 2014
Manuscript Accepted: April 7, 2014
Published: May 12, 2014

Kang Wang, "Low-frequency photonic bands in square Mediterranean and hexagonal snowflake metallic structures," J. Opt. Soc. Am. B 31, 1273-1281 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–229 (1994). [CrossRef]
  3. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996). [CrossRef]
  4. A. Moroz, “Three-dimensional complete photonic bandgap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999). [CrossRef]
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef]
  6. G. Guida, D. Maystre, G. Tayeb, and P. Vincent, “Mean-field theory of two-dimensional metallic photonic crystals,” J. Opt. Soc. Am. B 15, 2308–2315 (1998). [CrossRef]
  7. G. Guida, “Numerical study of bandgaps generated by randomly perturbed bidimensional metallic cubic photonic crystals,” Opt. Commun. 156, 294–296 (1998). [CrossRef]
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  9. B. Temelkuran, E. Ozbay, M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, “Reflection properties of metallic photonic crystals,” Appl. Phys. A 66, 363–365 (1998). [CrossRef]
  10. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002). [CrossRef]
  11. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003). [CrossRef]
  12. J. T. K. Wan and C. T. Chan, “Thermal emission by metallic photonic crystal slabs,” Appl. Phys. Lett. 89, 041915 (2006). [CrossRef]
  13. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14, 8785–8796 (2006). [CrossRef]
  14. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99, 053906 (2007). [CrossRef]
  15. M. M. Hossain, G. Chen, B. Jia, X.-H. Wang, and M. Gu, “Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals,” Opt. Express 18, 9048–9054 (2010). [CrossRef]
  16. S. Belousov, M. Bogdanova, A. Deinega, S. Eyderman, I. Valuev, Y. Lozovik, I. Polischuk, B. Potapkin, B. Ramamurthi, T. Deng, and V. Midha, “Using metallic photonic crystals as visible light sources,” Phys. Rev. B 86, 174201 (2012). [CrossRef]
  17. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1, 99–118 (2009). [CrossRef]
  18. J. W. Dong, G. Q. Liang, Y. H. Chen, and H. Z. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasi-periodic structure,” Opt. Express 14, 2014–2020 (2006). [CrossRef]
  19. L. Dal Negro, N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A 10, 064013 (2008). [CrossRef]
  20. C. Forestiere, G. Miano, G. Rubinacci, and L. Dal Negro, “Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticle arrays,” Phys. Rev. B 79, 085404 (2009). [CrossRef]
  21. M. M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, “Photonic bandgaps and localization in two-dimensional metallic quasi-crystals,” Europhys. Lett. 56, 41–46 (2001). [CrossRef]
  22. C. Bauer, G. Kobiela, and H. Giessen, “Optical properties of two-dimensional quasi-crystalline plasmonic arrays,” Phys. Rev. B 84, 193104 (2011). [CrossRef]
  23. Y. Wang, “Fabrication and characterization of metallic quasi-periodic structures,” Opt. Express 16, 1090–1095 (2008). [CrossRef]
  24. K. Wang, “Light wave states in quasi-periodic metallic structures,” Phys. Rev. B 86, 235110 (2012). [CrossRef]
  25. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. 10, 4785–4809 (1998). [CrossRef]
  26. http://en.wikipedia.org/wiki/Truncated_square_tiling .
  27. B. Grünbaum and G. S. Shephard, Tilings and Patterns (Freeman, 1987), pp. 57–65.
  28. R. S. Mulliken, “Report on notation for the spectra of polyatomic molecules,” J. Chem. Phys. 23, 1997–2011 (1955).
  29. R. S. Mulliken, “Erratum: report on notation for the spectra of polyatomic molecules,” J. Chem. Phys. 24, 1118 (1956).
  30. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127–12133 (1998). [CrossRef]
  31. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  32. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystal,” Phys. Rev. Lett. 84, 2140–2143 (2000). [CrossRef]
  33. V. Yannopapas, “Non-reciprocal photonic bands in a two-dimensional holey metal filled with a magnetoelectric material,” J. Opt. 14, 085105 (2012). [CrossRef]
  34. K. Kim and D. Stroud, “Photonic band structures of periodic arrays of pores in a metallic host: tight-binding beyond the quasi-static approximation,” Opt. Express 21, 19834–19849 (2013). [CrossRef]
  35. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parameterization for photonic bandgap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998). [CrossRef]
  36. K. Wang, “Light localization in photonic bandgaps of quasi-periodic dielectric structures,” Phys. Rev. B 82, 045119 (2010). [CrossRef]
  37. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976), Chap. 10, pp. 175–190.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited