OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1282–1289

Pulse propagation in one-dimensional disordered photonic crystals: interplay of disorder with instantaneous and relaxing nonlinearities

Denis V. Novitsky  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. 1282-1289 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Propagation of ultrashort light pulses in disordered multilayers is studied by using numerical simulations in the time domain. We consider cases of instantaneous and noninstantaneous Kerr nonlinearities of the structure materials. The competitive nature of disorder and nonlinearity is revealed on the long and short time scales. We also pay special attention to the effect of pulse self-trapping in the photonic crystal with relaxing nonlinearity and show the dependence of this effect on the level of disorder. We believe that the results reported here will be useful not only in the field of optics but also from the standpoint of the general problem of classical wave propagation in nonlinear disordered periodic media.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: January 16, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 16, 2014
Published: May 12, 2014

Denis V. Novitsky, "Pulse propagation in one-dimensional disordered photonic crystals: interplay of disorder with instantaneous and relaxing nonlinearities," J. Opt. Soc. Am. B 31, 1282-1289 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997). [CrossRef]
  2. M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006). [CrossRef]
  3. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: analysis of the peak line shape,” Phys. Rev. Lett. 56, 1471–1474 (1986). [CrossRef]
  4. T. V. Laptyeva, J. T. Bodyfelt, and S. Flach, “Subdiffusion of nonlinear waves in two-dimensional disordered lattices,” Europhys. Lett. 98, 60002 (2012). [CrossRef]
  5. M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108, 110604 (2012). [CrossRef]
  6. Y. Krivolapov, L. Levi, S. Fishman, M. Segev, and M. Wilkinson, “Super-diffusion in optical realizations of Anderson localization,” New J. Phys. 14, 043047 (2012). [CrossRef]
  7. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  8. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007). [CrossRef]
  9. E. Reyes-Gomes, A. Bruno-Alfonso, S. B. Cavalcanti, and L. E. Oliveira, “Suppression of Anderson localization of light in one-dimensional disordered photonic superlattices,” Phys. Rev. B 85, 195110 (2012). [CrossRef]
  10. M. Patterson, S. Hughes, S. Combrie, N.-V. Quynh Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009). [CrossRef]
  11. S. A. Gredeskul, Yu. S. Kivshar, A. A. Asatryan, K. Y. Bliokh, Yu. P. Bliokh, V. D. Freilikher, and I. V. Shadrivov, “Anderson localization in metamaterials and other complex media,” Low Temp. Phys. 38, 570–602 (2012). [CrossRef]
  12. D. M. Jović, Yu. S. Kivshar, C. Denz, and M. R. Belić, “Anderson localization of light near boundaries of disordered photonic lattices,” Phys. Rev. A 83, 033813 (2011). [CrossRef]
  13. I. V. Shadrivov, K. Y. Bliokh, Yu. P. Bliokh, V. D. Freilikher, and Yu. S. Kivshar, “Bistability of Anderson localized states in nonlinear random media,” Phys. Rev. Lett. 104, 123902 (2010). [CrossRef]
  14. S. E. Skipetrov and R. Maynard, “Instabilities of waves in nonlinear disordered media,” Phys. Rev. Lett. 85, 736–739 (2000). [CrossRef]
  15. S. E. Skipetrov, “Instability of speckle patterns in random media with noninstantaneous Kerr nonlinearity,” Opt. Lett. 28, 646–648 (2003). [CrossRef]
  16. B. Liu, A. Yamilov, Y. Ling, J. Y. Xu, and H. Cao, “Dynamic nonlinear effect on lasing in a random medium,” Phys. Rev. Lett. 91, 063903 (2003). [CrossRef]
  17. C. Conti, L. Angelani, and G. Ruocco, “Light diffusion and localization in three-dimensional nonlinear disordered media,” Phys. Rev. A 75, 033812 (2007). [CrossRef]
  18. A. S. Pikovsky and D. L. Shepelyansky, “Destruction of Anderson localization by a weak nonlinearity,” Phys. Rev. Lett. 100, 094101 (2008). [CrossRef]
  19. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008). [CrossRef]
  20. S. Flach, D. O. Krimer, and C. Skokos, “Universal spreading of wave packets in disordered nonlinear systems,” Phys. Rev. Lett. 102, 024101 (2009). [CrossRef]
  21. G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, “Absence of wave packet diffusion in disordered nonlinear systems,” Phys. Rev. Lett. 100, 084103 (2008). [CrossRef]
  22. A. Radosavljević, G. Gligorić, A. Maluckov, M. Stepić, and D. Milović, “Light propagation management by disorder and nonlinearity in one-dimensional photonic lattices,” J. Opt. Soc. Am. B 30, 2340–2347 (2013). [CrossRef]
  23. C. Conti, “Solitonization of the Anderson localization,” Phys. Rev. A 86, 061801 (2012). [CrossRef]
  24. V. Folli and C. Conti, “Self-induced transparency and the Anderson localization of light,” Opt. Lett. 36, 2830–2832 (2011). [CrossRef]
  25. V. Folli and C. Conti, “Anderson localization in nonlocal nonlinear media,” Opt. Lett. 37, 332–334 (2012). [CrossRef]
  26. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  27. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1994).
  28. Yu. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999). [CrossRef]
  29. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (AIP, 1992).
  30. D. V. Novitsky, “Pulse trapping inside a one-dimensional photonic crystal with relaxing cubic nonlinearity,” Phys. Rev. A 81, 053814 (2010). [CrossRef]
  31. M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006). [CrossRef]
  32. D. V. Novitsky, “Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal,” Phys. Rev. A 84, 053857 (2011). [CrossRef]
  33. D. V. Novitsky, “Search for the optimal parameters of relaxing nonlinearity to obtain self-trapping of an ultrashort pulse in a photonic crystal,” J. Nonlinear Opt. Phys. Mater. 21, 1250010 (2012).
  34. D. V. Novitsky, “Asymmetric light transmission through a photonic crystal with relaxing Kerr nonlinearity,” Europhys. Lett. 99, 44001 (2012). [CrossRef]
  35. D. V. Novitsky, “Effects of pulse collisions in a multilayer system with noninstantaneous cubic nonlinearity,” J. Opt. 15, 035206 (2013). [CrossRef]
  36. S. E. Skipetrov and R. Maynard, “Diffuse waves in nonlinear disordered media,” in Wave Scattering in Complex Media: From Theory to Applications (Springer, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited