OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1298–1307

Subwavelength imaging with composite metamaterials

Zsolt Szabó, Yasaman Kiasat, and Er Ping Li  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. 1298-1307 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



After reviewing the requirements, which have to be satisfied by a metamaterial-based subwavelength imaging system, a thin film lens is reported herein. The material of the lens is a composite of spherical Ag nanoparticles embedded in SiO2 host material. The image of the lens is calculated by solving Maxwell equations with the transfer matrix method. The procedure applies the Maxwell–Garnett mixing rule and high-frequency effective medium theory to calculate the electromagnetic parameters of the composite material. The formula of the composite material, the optimum working frequency, and the thicknesses of the layers are determined by minimizing the absolute difference of the field distribution in the source and image planes. The details of the design procedure are presented, and optimized configurations obtained under different constraints are discussed. The main advantage of the composite lens is that it can eliminate the hot spots present in the images of metallic superlens.

© 2014 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

Original Manuscript: February 5, 2014
Revised Manuscript: April 7, 2014
Manuscript Accepted: April 7, 2014
Published: May 12, 2014

Zsolt Szabó, Yasaman Kiasat, and Er Ping Li, "Subwavelength imaging with composite metamaterials," J. Opt. Soc. Am. B 31, 1298-1307 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  2. W. E. Moerner, “Eyes on super-resolution,” Nat. Photonics 3, 368–369 (2009). [CrossRef]
  3. S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics 3, 381–387 (2009). [CrossRef]
  4. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013). [CrossRef]
  5. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007). [CrossRef]
  6. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 219 (2011). [CrossRef]
  7. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014). [CrossRef]
  8. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009). [CrossRef]
  9. E. Palik, ed., Handbook of Optical Constants of Solids I-IV (Academic, 1985–1998).
  10. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).
  11. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters (Wiley, 2008).
  12. C. Krowne and Y. Zhang, eds., Physics of Negative Refraction and Negative Index Materials (Springer, 2007).
  13. D. R. Smith, W. Padilla, D. C. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  14. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  15. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780  nm wavelength,” Opt. Lett. 32, 53–55 (2007). [CrossRef]
  16. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). [CrossRef]
  17. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013). [CrossRef]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  19. N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  20. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 1148 (2010). [CrossRef]
  21. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 2, 1205 (2012). [CrossRef]
  22. D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23, 461–467 (2006). [CrossRef]
  23. H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010). [CrossRef]
  24. K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution, A Practical Approach to Global Optimization (Springer, 2005).
  25. R. Hegde, Z. Szabó, H. Yew-Li, E. P. L. Y. Kiasat, and W. J. R. Hoefer, “The dynamics of nanoscale superresolution imaging with the superlens,” IEEE Trans. Microwave Theor. Tech. 59, 2612–2623 (2011). [CrossRef]
  26. A. Shivola, Electromagnetic Mixing Formulae and Applications (IEE, 1999).
  27. D. E. Aspnese, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982). [CrossRef]
  28. P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell–Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005). [CrossRef]
  29. V. Ossenkopf, “Effective-medium theories for cosmic dust grains,” Astron. Astrophys. 251, 210–219 (1991).
  30. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. 94, 65–68 (1947). [CrossRef]
  31. R. Ruppin, “Evaluation of extended Maxwell–Garnett theories,” Opt. Commun. 182, 273–279 (2000). [CrossRef]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KGaA, 2004).
  33. H. Ehrenreich and H. R. Philipp, “Optical properties of ag and cu,” Phys. Rev. 128, 1622–1629 (1962). [CrossRef]
  34. U. Kreibig, “Electronic properties of small silver particles: the optical constant and their temperature dependence,” J. Phys. F 4, 999–1014 (1974). [CrossRef]
  35. www.sspectra.com/sopra.html .
  36. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  37. A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641–10652 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited