OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1322–1329

Artificial gauge potentials for neutral atoms: an application in evanescent light fields

V. E. Lembessis  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. 1322-1329 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that atoms interacting with evanescent light fields, generated at the interface of a dielectric with vacuum, experience artificial gauge potentials. Both the magnitude and the spatial distribution of these potentials depend crucially on the physical parameters that characterize the evanescent fields most notably the refractive index of the dielectric material and the angle of incidence of the laser beam totally internally reflected at the interface. Gauge fields are derived for various evanescent light fields and for both two-level and three-level systems. The use of such artificial gauge potentials for the manipulation of atoms trapped at the interfaces is pointed out and discussed.

© 2014 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Quantum Optics

Original Manuscript: December 16, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: April 8, 2014
Published: May 19, 2014

V. E. Lembessis, "Artificial gauge potentials for neutral atoms: an application in evanescent light fields," J. Opt. Soc. Am. B 31, 1322-1329 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic Physics: An Overview (World Scientific, 2011).
  2. R. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982). [CrossRef]
  3. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, “Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond,” arXiv:0606771v2 (2007).
  4. R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277–284 (2012). [CrossRef]
  5. I. Bloch, “Ultracold quantum gases in optical lattices,” Nat. Phys. 1, 23–30 (2005). [CrossRef]
  6. I. Bloch, “Exploring quantum matter with ultracold atoms in optical lattices,” J. Phys. B 38, S629–S643 (2005). [CrossRef]
  7. I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012). [CrossRef]
  8. S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford, 2006).
  9. J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, “Artificial gauge potentials for neutral atoms,” Rev. Mod. Phys. 83, 1523 (2011). [CrossRef]
  10. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Royal Soc. A 392, 45–57 (1984). [CrossRef]
  11. R. Dum and M. Olshanii, “Gauge structures in atom-laser interaction: Bloch oscillations in a dark lattice,” Phys. Rev. Lett. 76, 1788–1791 (1996). [CrossRef]
  12. P. M. Visser and G. Nienhuis, “Geometric potentials for subrecoil dynamics,” Phys. Rev. A 57, 4581–4591 (1998). [CrossRef]
  13. C. Cohen-Tannoudji, Atoms in Electromagnetic Fields (World Scientific, 1994).
  14. C. R. Bennett, J. B. Kirk, and M. Babiker, “Theory of evanescent mode atomic mirrors with a metallic layer,” Phys. Rev. A 63, 033405 (2001) and references therein. [CrossRef]
  15. V. E. Lembessis, M. Babiker, and D. L. Andrews, “Surface optical vortices,” Phys. Rev. A 79, 011806(R) (2009). [CrossRef]
  16. L. Allen, M. J. Padgett, and M. Babiker, The Orbital Angular Momentum of Light, E. Wolf, ed., Vol. 39 of Progress in Optics (Elsevier Science, 1999).
  17. R. M. A. Azzam, “Circular and near-circular polarization states of evanescent monochromatic light fields in total internal reflection,” Appl. Opt. 50, 6272–6276 (2011). [CrossRef]
  18. G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, “Light-induced effective magnetic fields for ultracold atoms in planar geometries,” Phys. Rev. A 73, 025602 (2006). [CrossRef]
  19. G. Juzeliūnas and P. Öhberg, “Creation of an effective magnetic field in ultracold atomic gases using electromagnetically induced transparency,” Opt. Spectrosc. 99, 357–361 (2005). [CrossRef]
  20. G. Juzeliūnas and P. Öhberg, Optical Manipulation of Ultracold Atoms, in Structured Light and Its Applications, D. L. Andrews, ed. (Academic, 2008).
  21. T. Graß, “Ultracold atoms in artificial gauge fields,” Ph.D. thesis (Institut de Ciències Fotòniques and Universitat Politècnica de Catalunya, 2012).
  22. D. Jaksch and P. Zoller, “Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms,” New J. Phys. 5, 56 (2003). [CrossRef]
  23. E. J. Mueller, “Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids,” Phys. Rev. A 70, 041603 (2004). [CrossRef]
  24. A. S. Sørensen, E. Demler, and M. D. Lukin, “Fractional quantum Hall states of atoms in optical lattices,” Phys. Rev. Lett. 94, 086803 (2005). [CrossRef]
  25. V. E. Lembessis and M. Babiker, “Enhanced quadrupole effects for atoms in optical vortices,” Phys. Rev. Lett. 110, 083002 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited