OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: A1–A5

Two-dimensional solitons and clusters in dissipative lattices

Weiling Zhu, Yingji He, Boris A. Malomed, and Dumitru Mihalache  »View Author Affiliations


JOSA B, Vol. 31, Issue 6, pp. A1-A5 (2014)
http://dx.doi.org/10.1364/JOSAB.31.0000A1


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the dynamics of two-dimensional spatial solitons in the structured optical medium modeled by the complex Ginzburg–Landau equation with cubic–quintic nonlinearity and a spatially periodic modulation of the local gain–loss coefficient [a dissipative lattice (DL)]. The analysis, following the variation of the DL’s amplitude and period, reveals several dynamical scenarios: stable or unstable propagation of a single dissipative soliton (the unstable propagation entails generation of an irregular multisoliton cluster), transformation of the input soliton into stable or unstable regular clusters patterned as the underlying DL, and decay of the input. Most results are obtained by means of systematic simulations, but the boundary of the single-soliton stability domain is explained analytically.

© 2014 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.6135) Nonlinear optics : Spatial solitons

History
Original Manuscript: December 9, 2013
Revised Manuscript: January 6, 2014
Manuscript Accepted: January 10, 2014
Published: February 21, 2014

Citation
Weiling Zhu, Yingji He, Boris A. Malomed, and Dumitru Mihalache, "Two-dimensional solitons and clusters in dissipative lattices," J. Opt. Soc. Am. B 31, A1-A5 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-6-A1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Special Topics 173, 233–243 (2009). [CrossRef]
  2. C. H. Tsang, B. A. Malomed, C.-K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59, 81–89 (2010). [CrossRef]
  3. C. H. Tsang, B. A. Malomed, and K. W. Chow, “Multistable dissipative structures pinned to dual hot spots,” Phys. Rev. E 84, 066609 (2011). [CrossRef]
  4. B. A. Malomed, E. Ding, K. W. Chow, and S. K. Lai, “Pinned modes in lossy lattices with local gain and nonlinearity,” Phys. Rev. E 86, 036608 (2012). [CrossRef]
  5. D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36, 1200–1202 (2011). [CrossRef]
  6. F. Ye, C. Huang, Y. V. Kartashov, and B. A. Malomed, “Solitons supported by localized parametric gain,” Opt. Lett. 38, 480–482 (2013). [CrossRef]
  7. Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010). [CrossRef]
  8. Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011). [CrossRef]
  9. O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785 (2011). [CrossRef]
  10. C. Huang, F. Ye, B. A. Malomed, Y. V. Kartashov, and X. Chen, “Solitary vortices supported by localized parametric gain,” Opt. Lett. 38, 2177–2180 (2013). [CrossRef]
  11. S. C. Fernández and V. S. Shchesnovich, “Nondecaying linear and nonlinear modes in a periodic array of spatially localized dissipations,” arXiv:1401.1687v1 (2014).
  12. Y. V. Bludov and V. V. Konotop, “Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices,” Phys. Rev. A 81, 013625 (2010). [CrossRef]
  13. V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010). [CrossRef]
  14. Y. He and D. Mihalache, “Soliton drift or swing induced by spatially inhomogeneous losses in media described by the complex Ginzburg–Landau,” J. Opt. Soc. Am. B 29, 2554–2558 (2012). [CrossRef]
  15. Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013). [CrossRef]
  16. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005). [CrossRef]
  17. P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B 6, R60–R75 (2004). [CrossRef]
  18. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2001). [CrossRef]
  19. J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013). [CrossRef]
  20. C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi, “Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics,” Phys. Rev. Lett. 110, 174101 (2013). [CrossRef]
  21. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996). [CrossRef]
  22. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  23. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).
  24. Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009). [CrossRef]
  25. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006). [CrossRef]
  26. H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006). [CrossRef]
  27. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007). [CrossRef]
  28. W. Chang, N. Akhmediev, S. Wabnitz, and M. Taki, “Influence of external phase and gain-loss modulation on bound solitons in laser systems,” J. Opt. Soc. Am. B 26, 2204–2210 (2009). [CrossRef]
  29. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, 2002).
  30. B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed. (Routledge, 2005), pp. 157–160.
  31. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002). [CrossRef]
  32. B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007). [CrossRef]
  33. V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996). [CrossRef]
  34. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, 1997).
  35. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008).
  36. V. Skarka and N. B. Aleksić, “Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations,” Phys. Rev. Lett. 96, 013903 (2006). [CrossRef]
  37. T. Yasuhide and K. Masanori, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol. 18, 618–623 (2000). [CrossRef]
  38. Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012). [CrossRef]
  39. Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010). [CrossRef]
  40. W.-L. Zhu, L. Luo, J.-H. Yan, and Y.-J. He, “Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg–Landau equation,” J. Mod. Opt. 56, 1824–1828 (2009). [CrossRef]
  41. B. A. Malomed, “Potential of interaction between two- and three-dimensional solitons,” Phys. Rev. E 58, 7928–7933 (1998). [CrossRef]
  42. D. Mihalache, “Linear and nonlinear light bullets: recent theoretical and experimental studies,” Rom. J. Phys. 57, 352–371 (2012).
  43. H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523, 61–126 (2013). [CrossRef]
  44. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited