OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: A13–A19

Nonlinear quantum tunneling effects in nanoplasmonic environments: two-photon absorption and harmonic generation

Joseph W. Haus, Domenico de Ceglia, Maria Antonietta Vincenti, and Michael Scalora  »View Author Affiliations


JOSA B, Vol. 31, Issue 6, pp. A13-A19 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000A13


View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a quantum mechanical approach to derive a set of linear and nonlinear quantum conductivity coefficients for metal–insulator–metal structures with nanometer sized gaps. The immediate proximity of metallic objects generates a tunneling AC current density that endows the gap region with additional linear and nonlinear coefficients that in turn trigger linear and nonlinear absorption, and second- and third-harmonic generation. For example, a vacuum gap approximately 0.8 nm thick displays an effective |χ(2)|0.1pm/V for adjacent objects composed of dissimilar metals and an effective |χ(3)|1020m2/V2 for either similar or dissimilar metals, increasing exponentially for smaller gaps. Field localization inside the gap ensures that harmonic generation arising from the gap region overwhelms intrinsic metal second- and third-order nonlinearities.

© 2014 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(190.0190) Nonlinear optics : Nonlinear optics
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(250.5403) Optoelectronics : Plasmonics

History
Original Manuscript: February 4, 2014
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 1, 2014
Published: April 1, 2014

Citation
Joseph W. Haus, Domenico de Ceglia, Maria Antonietta Vincenti, and Michael Scalora, "Nonlinear quantum tunneling effects in nanoplasmonic environments: two-photon absorption and harmonic generation," J. Opt. Soc. Am. B 31, A13-A19 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-6-A13


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013). [CrossRef]
  2. J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31, 259–269 (2014). [CrossRef]
  3. J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  5. M. Stockman, “Ultrafast nanoplasmonics and coherent control,” New J. Phys. 10, 025031 (2008). [CrossRef]
  6. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  8. M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013). [CrossRef]
  9. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45, 433001 (2012). [CrossRef]
  10. N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  11. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012). [CrossRef]
  12. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012). [CrossRef]
  13. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]
  14. M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Physiol. 89, 221–223 (2007).
  15. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012). [CrossRef]
  16. M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012). [CrossRef]
  17. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003). [CrossRef]
  18. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010). [CrossRef]
  19. M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013). [CrossRef]
  20. D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014). [CrossRef]
  21. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef]
  22. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997). [CrossRef]
  23. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999). [CrossRef]
  24. M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011). [CrossRef]
  25. Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013). [CrossRef]
  26. M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).
  27. M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013). [CrossRef]
  28. M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012). [CrossRef]
  29. F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. B 112, 17983–17987 (2008).
  30. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett. 10, 3473–3481 (2010). [CrossRef]
  31. C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012). [CrossRef]
  32. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009). [CrossRef]
  33. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010). [CrossRef]
  34. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012). [CrossRef]
  35. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012). [CrossRef]
  36. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013). [CrossRef]
  37. C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998). [CrossRef]
  38. M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004). [CrossRef]
  39. P. C. Hobbs, R. B. Laibowitz, F. R. Libsch, N. C. LaBianca, and P. P. Chiniwalla, “Efficient waveguide-integrated tunnel junction detectors at 1.6  μm,” Opt. Express 15, 16376–16389 (2007). [CrossRef]
  40. M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11, 1611–1621 (1972). [CrossRef]
  41. W. Tantraporn, “Electron current through metal-insulator-metal sandwiches,” Solid-State Electron. 7, 81–91 (1964). [CrossRef]
  42. L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).
  43. A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978). [CrossRef]
  44. B. J. Eliasson, “Metal–insulator–metal diodes for solar energy conversion,” Ph.D. thesis (University of Colorado at Boulder, 2001).
  45. M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010). [CrossRef]
  46. S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010). [CrossRef]
  47. S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010). [CrossRef]
  48. S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67, 94–99 (2012). [CrossRef]
  49. S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovoltaics 1, 78–83 (2011). [CrossRef]
  50. H. Kroemer, Quantum Mechanics, 3rd ed. (Prentice-Hall, 1994).
  51. J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793 (1963). [CrossRef]
  52. J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963). [CrossRef]
  53. P. K. Tien and J. P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647 (1963). [CrossRef]
  54. J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,” Appl. Phys. Lett. 33, 611 (1978). [CrossRef]
  55. J. R. Tucker and M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. QE-57, 1055–1133 (1985). [CrossRef]
  56. J. R. Tucker, “Quantum limited detection in tunnel junction mixers,” IEEE J. Quantum Electron. 15, 1234–1258 (1979). [CrossRef]
  57. G. Moddel and S. Grover, eds., Rectenna Solar Cells (Springer, 2013).
  58. B. Joshi and G. Moddel, “Efficiency limits of rectenna solar cells: theory of broadband photon-assisted-tunneling,” Appl. Phys. Lett. 102, 083901 (2013). [CrossRef]
  59. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010). [CrossRef]
  60. M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012). [CrossRef]
  61. J. D. Jackson, The Classical Electromagnetic Field (Wiley, 1999).
  62. N. D. Lang and W. Kohn, “Theory of metal surfaces: charge density and surface energy,” Phys. Rev. B 1, 4555–4568 (1970). [CrossRef]
  63. N. D. Lang and W. Kohn, “Theory of metal surfaces: work function,” Phys. Rev. B 3, 1215–1223 (1971). [CrossRef]
  64. V. E. Kenner, R. E. Allen, and W. M. Saslow, “Screening and tunneling at metal surfaces,” Phys. Lett. 38A, 255–256 (1972). [CrossRef]
  65. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993). [CrossRef]
  66. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited