OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: A20–A23

Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement

Hammam Qassim, Filippo M. Miatto, Juan P. Torres, Miles J. Padgett, Ebrahim Karimi, and Robert W. Boyd  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. A20-A23 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the most widely used techniques for measuring the orbital angular momentum (OAM) components of a light beam is to flatten the spiral phase front of a mode, in order to couple it to a single-mode optical fiber (SMOF). This method, however, suffers from an efficiency that depends on the OAM of the initial mode and on the presence of higher-order radial modes. The reason is that once the phase has been flattened, the field retains its ringed intensity pattern and is therefore a nontrivial superposition of purely radial modes, of which only the fundamental one couples to a SMOF. In this paper, we study the efficiency of this technique both theoretically and experimentally. We find that even for low values of the OAM, a large amount of light can fall outside the fundamental mode of the fiber, and we quantify the losses as functions of the waist of the coupling beam of the OAM and radial indices. Our results can be used as a tool to remove the efficiency bias where fair-sampling loopholes are not a concern. However, we hope that our study will encourage the development of better detection methods of the OAM content of a beam of light.

© 2014 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(260.6042) Physical optics : Singular optics
(070.6120) Fourier optics and signal processing : Spatial light modulators

Original Manuscript: January 8, 2014
Manuscript Accepted: February 24, 2014
Published: April 7, 2014

Hammam Qassim, Filippo M. Miatto, Juan P. Torres, Miles J. Padgett, Ebrahim Karimi, and Robert W. Boyd, "Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement," J. Opt. Soc. Am. B 31, A20-A23 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976–978 (2007). [CrossRef]
  2. W. S. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007). [CrossRef]
  3. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with high order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995). [CrossRef]
  4. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001). [CrossRef]
  5. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]
  6. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  7. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012). [CrossRef]
  8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013). [CrossRef]
  9. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  10. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992). [CrossRef]
  11. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013). [CrossRef]
  12. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  13. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  14. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009). [CrossRef]
  15. G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 105601 (2010). [CrossRef]
  16. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013). [CrossRef]
  17. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys. 7, 55 (2005). [CrossRef]
  18. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett. 38, 3546–3549 (2013). [CrossRef]
  19. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007). [CrossRef]
  20. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009). [CrossRef]
  21. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]
  22. T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell experiments using qudits,” Phys. Rev. Lett. 104, 060401 (2010). [CrossRef]
  23. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011). [CrossRef]
  24. J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301(R) (2003). [CrossRef]
  25. H. Di Lorenzo Pires, H. C. B. Florijn, and M. P. van Exter, “Measurement of the spiral spectrum of entangled two-photon states,” Phys. Rev. Lett. 104, 020505 (2010). [CrossRef]
  26. L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of high-purity higher-order Laguerre-Gauss beams at high laser power,” Phys. Rev. Lett. 110, 251101 (2013). [CrossRef]
  27. M. Granata, C. Buy, R. Ward, and M. Barsuglia, “Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors,” Phys. Rev. Lett. 105, 231102 (2010). [CrossRef]
  28. S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Universal unitary gate for single-photon spin-orbit four-dimensional states,” Phys. Rev. A 80, 022326 (2009). [CrossRef]
  29. G. Molina-Terriza, L. Rebane, J. P. Torres, L. Torner, and S. Carrasco, “Probing canonical geometrical objects by digital spiral imaging,” J. Eur. Opt. Soc. 2, 07014 (2007). [CrossRef]
  30. V. D’Ambrosio, F. Cardano, E. Karimi, E. Nagali, E. Santamato, L. Marrucci, and F. Sciarrino, “Test of mutually unbiased bases for six-dimensional photonic quantum systems,” Sci. Rep. 3, 2726 (2013). [CrossRef]
  31. D. Flamm, C. Schulze, D. Naidoo, S. Schröter, A. Forbes, and M. Duparré, “All-digital holographic tool for mode excitation and analysis in optical fibers,” J. Lightwave Technol. 31, 1023–1032 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited