OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: A24–A30

Two-dimensional models for optical vortices driven by gain media

Hyoung-In Lee and Jinsik Mok  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. A24-A30 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamics of a single particle moving on a flat plane are examined under the influence of state-dependent potentials. As a result, the electromagnetic Poynting-vector flows are captured for optical vortices driven by gain media. In particular, the signs of the coupling coefficients play a crucial role in establishing vortices. In this respect, the singularities related to vortices are resolved through backward time evolutions. Additional effects of the noncircular nature of quadratic potentials are illustrated through numerical simulations. In addition, the quantum mechanical reduction of our model features multipoles.

© 2014 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(160.1245) Materials : Artificially engineered materials
(080.4865) Geometric optics : Optical vortices

Original Manuscript: January 6, 2014
Revised Manuscript: March 29, 2014
Manuscript Accepted: March 30, 2014
Published: April 28, 2014

Hyoung-In Lee and Jinsik Mok, "Two-dimensional models for optical vortices driven by gain media," J. Opt. Soc. Am. B 31, A24-A30 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. S. Agarwal, “Engineering non-Gaussian entangled states with vortices by photon subtraction,” New J. Phys. 13, 073008 (2011). [CrossRef]
  2. N. M. Litchinitser, “Structured light meets structured matter,” Science 337, 1054–1055 (2012). [CrossRef]
  3. X. Cheng, J. A. Katine, G. E. Rowlands, and I. N. Krivorotov, “Nonlinear ferromagnetic resonance induced by spin torque in nanoscale magnetic tunnel junctions,” Appl. Phys. Lett. 103, 082402 (2013). [CrossRef]
  4. J. M. Seoane and M. A. F. Sanjuán, “New developments in classical chaotic scattering,” Rep. Prog. Phys. 76, 016001 (2013). [CrossRef]
  5. G. Ferrari and G. Cuoghi, “Schrödinger equation for a particle on a curved surface in an electric and magnetic field,” Phys. Rev. Lett. 100, 230403 (2008). [CrossRef]
  6. N. R. Cooper and J. Dalibard, “Reaching fractional quantum Hall states with optical flux lattices,” Phys. Rev. Lett. 110, 185301 (2013). [CrossRef]
  7. M. Liu and X. Zhang, “Plasmon-boosted magneto-optics,” Nat. Photonics 7, 429–430 (2013). [CrossRef]
  8. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013). [CrossRef]
  9. C. He, L. Lin, X.-C. Sun, X.-P. Liu, M.-H. Lu, and Y.-F. Chen, “Topological photonic states,” Int. J. Mod. Phys. B 28, 1441001 (2014). [CrossRef]
  10. L. Tang, H. Shi, H. Gao, J. Du, Z. Zhang, X. Dong, and C. Du, “An eigenvalue method to study the threshold behaviors of plasmonic nano-lasers,” Appl. Phys. B 113, 575–579 (2013). [CrossRef]
  11. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008). [CrossRef]
  12. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  13. G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys. 10, 113008 (2008). [CrossRef]
  14. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Phil. Trans. R. Soc. A 369, 3525–3550 (2011). [CrossRef]
  15. M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013). [CrossRef]
  16. A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, “Polarization conversion and “focusing” of light propagating through a small chiral hole in a metallic screen,” Appl. Phys. Lett. 86, 201105 (2005). [CrossRef]
  17. S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71, 037603 (2005). [CrossRef]
  18. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010). [CrossRef]
  19. H.-I. Lee and J. Mok, “Electromagnetic-energy conservation for media with metallic constituents with special attention to damped waves,” J. Opt. 15, 035002 (2013). [CrossRef]
  20. H.-I. Lee and J. Mok, “Gain-assisted Poynting-vector vortices realized with a single lossy metal wire,” IEEE J. Sel. Top. Quantum Electron. 19, 4600408 (2013). [CrossRef]
  21. H.-I. Lee and E.-H. Lee, “Complex relaxation rates of the Drude metals and their effects on the lifetime and symmetry of plasmon resonances,” Opt. Express 19, 10410–10422 (2011). [CrossRef]
  22. H.-I. Lee and J. Mok, “On the cubic zero-order solution of electromagnetic waves. II. isolated particles with lossy plasmas,” Phys. Plasmas 17, 072109 (2010). [CrossRef]
  23. M. Soljačić, K. Steiglitz, S. M. Sears, M. Segev, M. H. Jakubowski, and R. Squier, “Collisions of two solitons in an arbitrary number of coupled nonlinear Schrödinger equations,” Phys. Rev. Lett. 90, 254102 (2003). [CrossRef]
  24. Q. Du, M. D. Gunzburger, and J. S. Peterson, “Analysis and approximation of the Ginzburg–Landau model of superconductivity,” SIAM Rev. 34, 54–81 (1992). [CrossRef]
  25. N. M. Litchinitser, I. R. Gabitov, and A. I. Maimistov, “Optical bistability in a nonlinear optical coupler with a negative index channel,” Phys. Rev. Lett. 99, 113902 (2007). [CrossRef]
  26. S. Boyd and L. Vandenberghe, Convex Optimzation (Cambridge University, 2004).
  27. J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H.-G. Silva-Pereyra, C. Torres-Torres, A.-L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express 17, 12849–12868 (2009). [CrossRef]
  28. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th ed. (Wiley, 2010).
  29. M. Abramowitz and N. C. Stegun, Handbook of Mathematical Functions (Dover, 1970).
  30. C. Baesens and R. S. MacKay, “Interaction of two systems with saddle-node bifurcations on invariant circles: I. foundations and the mutualistic case,” Nonlinearity 26, 3043–3076 (2013). [CrossRef]
  31. S.-P. Zhu, A. Badran, and X. Lu, “A new exact solution for pricing European options in a two-state regime-switching economy,” Comput. Math. Appl. 64, 2744–2755 (2012). [CrossRef]
  32. K. Halbach, “Design of permanent multipole magnets with oriented rare earth cobalt material,” Nucl. Instrum. Methods 169, 1–10 (1980). [CrossRef]
  33. R. Bjørk, C. R. H. Bahl, A. Smith, and N. Pryds, “Optimization and improvement of Halbach cylinder design,” J. Appl. Phys. 104, 013910 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited