OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: A31–A39

Investigation of the unusual surface plasmon modes and switching bandgap in three-dimensional photonic crystals with pyrochlore lattices composed of epsilon-negative materials

Hai-Feng Zhang, Shao-Bin Liu, and Xiang-Kun Kong  »View Author Affiliations


JOSA B, Vol. 31, Issue 6, pp. A31-A39 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000A31


View Full Text Article

Enhanced HTML    Acrobat PDF (1281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The unusual surface plasmon modes and switching bandgap of three-dimensional (3D) photonic crystals (PCs) with pyrochlore lattices that are composed of core isotropic positive-index dielectric spheres surrounded by epsilon-negative (ENG) material shells inserted in the air are theoretically investigated in detail based on the plane wave expansion method. Numerical simulations show that the proposed double-shell structure can obtain complete photonic band gaps (PBGs) and a flatbands region. Compared to the conventional lattices, such as diamond, face-centered-cubic, body-centered-cubic, and simple-cubic lattices, a larger PBG can be achieved in the pyrochlore arrangement. It is noticed that the flatbands region is determined by the existence of surface plasmon modes. If the thickness of the ENG material shell is larger than a threshold value, the band structures of such 3D PCs will be similar to those obtained from the same structure containing pure ENG material spheres. In this case, the inserted core spheres will also not affect the band structures. It is also provided that the upper edge of the flatbands region does not depend on the topology of the lattice. Our results also demonstrate that the PBG can be manipulated by the radius of the core dielectric sphere, the dielectric constant of ENG materials, and the electronic plasma frequency, respectively. This means that the PBG can be obtained by replacing the pure ENG material spheres with such double-shell structures to save the material in the realization. Thus, such proposed 3D PCs offer a novel way to realize the potential applications.

© 2014 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.3918) Materials : Metamaterials
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

History
Original Manuscript: December 23, 2013
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 4, 2014
Published: May 2, 2014

Citation
Hai-Feng Zhang, Shao-Bin Liu, and Xiang-Kun Kong, "Investigation of the unusual surface plasmon modes and switching bandgap in three-dimensional photonic crystals with pyrochlore lattices composed of epsilon-negative materials," J. Opt. Soc. Am. B 31, A31-A39 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-6-A31


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission of photons in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. J. J. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  4. P. Kockaert, P. Tassin, I. Veretennicoff, G. V. d. Sande, and M. Tlidi, “Beyond the zero-diffraction regime in optical cavities with a left-handed material,” J. Opt. Soc. Am. B 26, B148–B155 (2009). [CrossRef]
  5. L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004). [CrossRef]
  6. Y. Chen, “Broadband one-dimensional photonic crystals wave plate containing single-negative materials,” Opt. Express 18, 19920–19929 (2010). [CrossRef]
  7. X. H. Deng, N. H. Liu, J. T. Liu, Q. H. Liao, and T. B. Yu, “Enlargement of polarization-independent omnidirectional band gaps in the photonic heterostrucutures containing single-negative materials,” J. Opt. Soc. Am. B 27, 1174–1178 (2010). [CrossRef]
  8. V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).
  9. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  11. R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16, 18131–18144 (2008). [CrossRef]
  12. H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012). [CrossRef]
  13. A. Moroz, “Three-dimensional complete photonic-band-gap structure in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999). [CrossRef]
  14. H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012). [CrossRef]
  15. M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004). [CrossRef]
  16. H. F. Zhang, S. B. Liu, and X. K. Kong, “Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials,” Laser Phys. 23, 105815 (2013). [CrossRef]
  17. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006). [CrossRef]
  18. K. Xu, X. Zheng, C. Li, and W. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005). [CrossRef]
  19. X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010). [CrossRef]
  20. Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001). [CrossRef]
  21. C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).
  22. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000). [CrossRef]
  23. H. F. Zhang, S. B. Liu, and X. K. Kong, “Dispersion properties of three-dimensional plasma photonic crystals in Diamond lattice arrangement,” J. Lightwave Technol. 31, 1694–1702 (2013). [CrossRef]
  24. H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013). [CrossRef]
  25. H. F. Zhang, S. B. Liu, and X. K. Kong, “Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices,” Prog. Electromagn. Res. 141, 267–289 (2013). [CrossRef]
  26. H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigation of Faraday effects in photonic band gap for tunable three-dimensional magnetized plasma photonic crystals containing the anisotropic material in diamond arrangement,” J. Electromagn. Wave Appl. 27, 1776–1791 (2013). [CrossRef]
  27. Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721–3729 (1998). [CrossRef]
  28. N. Malkova, S. Kim, T. Dilazaro, and V. Gopalan, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003). [CrossRef]
  29. A. J. Garcia-Adeva, “Band structure of photonic crystals with the symmetry of a pyrochlore lattice,” Phys. Rev. B 73, 073107 (2006). [CrossRef]
  30. H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials,” Appl. Phys. B 112, 553–563 (2013). [CrossRef]
  31. D. P. Aryal, K. L. Tsakmakidis, and O. Hess, “Complete bandgap switching in photonic crystals,” J. New Phys. 11, 073011 (2009). [CrossRef]
  32. S. Jun, Y. S. Cho, and S. Im, “Moving least-square method for the band-structure calculation of 2D photonic crystals,” Opt. Express 11, 541–551 (2003). [CrossRef]
  33. P. Chiang, C. Yu, and H. Chang, “Analysis of two-dimensional photonic crystals using a mutildomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007). [CrossRef]
  34. M. Lou, Q. H. Liu, and Z. Li, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 56702 (2012).
  35. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993). [CrossRef]
  36. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 5, 13962 (1992). [CrossRef]
  37. H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011). [CrossRef]
  38. V. Kuzmiak and A. A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phy. Rev. B 58, 7230–7251 (1998). [CrossRef]
  39. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys.: Condens. Matter 11, 997–1008 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited