OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: A6–A12

Interference theory of multiple optical vortex states in spiral phase plate etalon: thick-plate and thin-plate approximation

Yisa S. Rumala  »View Author Affiliations

JOSA B, Vol. 31, Issue 6, pp. A6-A12 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spiral phase plate etalon transmission function is calculated from the low-reflectivity to high-reflectivity regime. Two approximations are considered: thick-plate approximation and thin-plate approximation. The thick-plate approximation explicitly takes into account the angle between the azimuthally increasing surface and the flat surface, while the thin-plate approximation does not. The two results are in agreement in the low-reflectivity regime, but not in the high-reflectivity regime. The thick-plate approximation is expected to provide a more accurate and general description of the device in all regimes. Origins of the device output intensity dependence on angle due to multiple vortex states present in the device are discussed, and a constraint on the number of internal reflections due to device geometry is also discussed.

© 2014 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(050.4865) Diffraction and gratings : Optical vortices
(080.4865) Geometric optics : Optical vortices
(260.6042) Physical optics : Singular optics

Original Manuscript: January 6, 2014
Revised Manuscript: February 16, 2014
Manuscript Accepted: February 17, 2014
Published: March 27, 2014

Yisa S. Rumala, "Interference theory of multiple optical vortex states in spiral phase plate etalon: thick-plate and thin-plate approximation," J. Opt. Soc. Am. B 31, A6-A12 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  2. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43, 688–694 (2004). [CrossRef]
  3. S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” J. Opt. A 6, S288–S290 (2004). [CrossRef]
  4. T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum. 75, 5131–5135 (2004). [CrossRef]
  5. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397–2399 (2004). [CrossRef]
  6. M. V. Berry, “Optical vortices evolving from integer and fractional phase steps,” J. Opt. A 6, 259–268 (2004). [CrossRef]
  7. W. M. Lee, X.-C. Yuan, and W. C. Cheong, “Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation,” Opt. Lett. 29, 1796–1798 (2004). [CrossRef]
  8. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Spiral phase elements obtained by use of discrete space-variant subwavelength gratings,” Opt. Commun. 251, 306–314 (2005). [CrossRef]
  9. V. V. Kotlyar, S. N. Khonina, A. A. Kovalev, V. A. Soifer, H. Elfstrom, and J. Turunen, “Diffraction of a plane, finite-radius wave by a spiral phase plate,” Opt. Lett. 31, 1597–1599 (2006). [CrossRef]
  10. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, O. Yu. Moiseev, and V. A. Soifer, “Simple optical vortices formed by a spiral phase plate,” J. Opt. Technol. 74, 686–693 (2007). [CrossRef]
  11. V. V. Kotlyar and A. A. Kovalev, “Fraunhofer diffraction of the plane wave by multilevel (quantized) spiral phase plate,” Opt. Lett. 33, 189–191 (2008). [CrossRef]
  12. H. Tsai, H. I. Smith, and R. Menon, “Fabrication of spiral-phase diffractive elements using scanning-electron-beam lithography,” J. Vac. Sci. Technol. B 25, 2068–2071 (2007). [CrossRef]
  13. C. Jun, K. Deng-Feng, G. Min, and F. Zhi-Liang, “Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching,” Chin. Phys. Lett. 26, 014202 (2009). [CrossRef]
  14. E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010). [CrossRef]
  15. N. Zhang, J. A. Davis, I. Moreno, D. M. Cottrell, and X. C. Yuan, “Analysis of multilevel spiral phase plates using a dammann vortex sensing grating,” Opt. Express 18, 25987–25992 (2010). [CrossRef]
  16. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]
  17. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012). [CrossRef]
  18. P. Schemmel, S. Maccalli, G. Pisano, B. Maffei, and M. W. R. Ng, “Three-dimensional measurements of a millimeter wave orbital angular momentum vortex,” Opt. Lett. 39, 626–629 (2014). [CrossRef]
  19. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  20. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008). [CrossRef]
  21. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics, 2003).
  22. J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011).
  23. D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University, 2012).
  24. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005). [CrossRef]
  25. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230, 134–142 (2008). [CrossRef]
  26. R. Steiger, S. Bernet, and M. Ritsch-Marte, “Mapping of phase singularities with spiral phase contrast microscopy,” Opt. Express 21, 16282–16289 (2013). [CrossRef]
  27. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012). [CrossRef]
  28. Y. S. Rumala, “A new etalon geometry: the spiral phase plate etalon,” Ph.D. thesis (University of Michigan, 2012).
  29. Y. S. Rumala and A. E. Leanhardt, “Multiple-beam interference in a spiral phase plate,” J. Opt. Soc. Am. B 30, 615–621 (2013). [CrossRef]
  30. M. Dobosz and M. Kozuchowski, “Frequency stabilization of a diode by means of an optical wedge,” Meas. Sci. Technol. 23, 035202 (2012). [CrossRef]
  31. J. Ye and S. Cudniff, Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Kluwer, 2004).
  32. S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hansch, and J. L. Hall, “Towards the ultimate control of light optical frequency metrology and the phase control of femtosecond pulses,” Optics Photonics News 11 (10), 16–22 (2000). [CrossRef]
  33. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
  34. M. Eggleston, T. Godat, E. Munro, M. A. Alonso, H. Shi, and M. Bhattacharya, “Ray transfer matrix for a spiral phase plate,” J. Opt. Soc. Am. A 30, 2526–2530 (2013). [CrossRef]
  35. D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011). [CrossRef]
  36. K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and G. K. Campbell, “Driving phase slips in a superfluid atom circuit with a rotating weak link,” Phys. Rev. Lett. 110, 025302 (2013). [CrossRef]
  37. A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb, K. Helmerson, W. D. Phillips, and G. K. Campbell, “Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link,” Phys. Rev. Lett. 106, 130401 (2011). [CrossRef]
  38. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012). [CrossRef]
  39. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013). [CrossRef]
  40. K. Kinosita, “Numerical evaluation of the intensity curve of a multiple-beam Fizeau fringe,” J. Phys. Soc. Jpn. 8, 219–225 (1953). [CrossRef]
  41. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  42. J. Brossel, “Multiple-beam localized fringes. Part I. Intensity distribution and localization,” Proc. Phys. Math. Soc. Jpn. 59, 224–234 (1947). [CrossRef]
  43. M. A. Rob, “Limitation of a wedge etalon for high-resolution linewidth measurements,” Opt. Lett. 15, 604–606 (1990). [CrossRef]
  44. T. T. Kajava, H. M. Lauranto, and R. R. E. Solomaa, “Fizeau interferometer in spectral measurements,” J. Opt. Soc. Am. B 10, 1980–1989 (1993). [CrossRef]
  45. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998). [CrossRef]
  46. Y. S. Rumala, “Structured light interference due to multiple reflections in a spiral phase plate device and its propagation,” Proc. SPIE 8999, 899936 (2014).
  47. Note that r2=0.21 corresponds to a piece of glass that does not have antireflection coating. Therefore, an SPP that does not have antireflection coating will have an intensity modulation as a function of angle with amplitude of about 4% of total intensity as presented in Figs. 2(a) and 3, and the probability of generating OAM in an undesired state will be approximately 0.00194 as presented in Table 1. More generally, these effects ought to be taken into account in devices or structured media (e.g., phase grating) used to generate OAM based on transmission of light through it.
  48. S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004). [CrossRef]
  49. E. Yao, S. Franke-Arnold, J. Courtial, S. Barnett, and M. Padgett, “Fourier relationship between angular position and optical orbital angular momentum,” Opt. Express 14, 9071–9076 (2006). [CrossRef]
  50. B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10, 103013 (2008). [CrossRef]
  51. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited