OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1422–1429

Nanoscale active hybrid plasmonic laser with a metal-clad metal–insulator–semiconductor square resonator

Zengli Huang, Jianfeng Wang, Zhenghui Liu, Gengzhao Xu, Bing Cao, Chinhua Wang, and Ke Xu  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1422-1429 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001422


View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a nanoscale active hybrid plasmonic laser with a metal-clad metal–insulator–semiconductor (MIS) square resonator. By forming a metal layer surrounding the MIS structure, the cavity mode can be well bound to the ultrasmall volume in the spacer region atop a semiconductor nanosquare, and the cavity Q factor can be statically tuned by changing the spacer height and has little influence on the wafer bonding substrate. Numerical simulations for an optimized structure show that the cavity feedback has been significantly improved due to the near-zero radiative loss and low metal loss. Abundant direct-gap InGaN gain material and low threshold gain make this structure a promising platform for nanolaser operating at room temperature. A four-level two-electron finite-difference time-domain simulation shows that this cavity can achieve room-temperature lasing at visible wavelengths with an estimated optical pump threshold of 190 μW, and the active material gain of InGaN should reach 0.855μm1.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 28, 2014
Manuscript Accepted: May 2, 2014
Published: June 4, 2014

Citation
Zengli Huang, Jianfeng Wang, Zhenghui Liu, Gengzhao Xu, Bing Cao, Chinhua Wang, and Ke Xu, "Nanoscale active hybrid plasmonic laser with a metal-clad metal–insulator–semiconductor square resonator," J. Opt. Soc. Am. B 31, 1422-1429 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt. 49, F59–F70 (2010). [CrossRef]
  2. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003). [CrossRef]
  3. M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers [Invited],” J. Opt. Soc. Am. B 27, B36–B44 (2010). [CrossRef]
  4. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1, e20–e28 (2012). [CrossRef]
  5. R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013). [CrossRef]
  6. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  7. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012). [CrossRef]
  8. N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100, 131107 (2012). [CrossRef]
  9. C. Y. A. Ni and S. L. Chuang, “Theory of high-speed nanolasers and nanoLEDs,” Opt. Express 20, 16450–16470 (2012). [CrossRef]
  10. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  11. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008). [CrossRef]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  13. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010). [CrossRef]
  14. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  15. D. B. Li and C. Z. Ning, “Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser,” Opt. Express 20, 16348–16357 (2012). [CrossRef]
  16. D. Costantini, L. Greusard, A. Bousseksou, Y. D. Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013). [CrossRef]
  17. Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012). [CrossRef]
  18. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013). [CrossRef]
  19. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008). [CrossRef]
  20. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo–dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  21. Y. G. Wang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih, and H. C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett. 98, 131110 (2011). [CrossRef]
  22. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  23. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011). [CrossRef]
  24. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010). [CrossRef]
  25. Q. Ding, A. Mizrahi, Y. Fainman, and V. Lomakin, “Dielectric shielded nanoscale patch laser resonators,” Opt. Lett. 36, 1812–1814 (2011). [CrossRef]
  26. O. Bondarenko, A. Simic, Q. Gu, J. H. Lee, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Wafer bonded subwavelength metallo–dielectric laser,” IEEE Photon. J. 3, 608–616 (2011). [CrossRef]
  27. Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain,” IEEE J. Quantum Electron. 41, 997–1001 (2005). [CrossRef]
  28. C. Shu-Wei and C. Shun Lien, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009). [CrossRef]
  29. I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103, 021112 (2013). [CrossRef]
  30. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef]
  31. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005). [CrossRef]
  32. M. M. Sigalas and R. Biswas, “Slot defect in three-dimensional photonic crystals,” Phys. Rev. B 78, 033101 (2008). [CrossRef]
  33. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94, 061109 (2009). [CrossRef]
  34. K. L. Shaklee, R. E. Nahory, and R. F. Leheny, “Optical gain in semiconductors,” J. Lumin. 7, 284–309 (1973). [CrossRef]
  35. S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited