OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1451–1455

Photonic bands and defect modes in metallo-dielectric photonic crystal slabs

Simone Zanotto, Giorgio Biasiol, Lucia Sorba, and Alessandro Tredicucci  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1451-1455 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic components based on structured metallic elements show great potential for device applications where field enhancement and confinement of the radiation on a subwavelength scale is required. In this paper, we report on a detailed study of a prototypical metallo-dielectric photonic structure, where features well known in the world of dielectric photonic crystals such as bandgaps and defect modes are exported to the metallic counterpart. Such a structure may have interesting applications in infrared science and technology, for instance, in quantum well infrared photodetectors, narrowband spectral filters, and tailorable thermal emitters.

© 2014 Optical Society of America

OCIS Codes
(310.2790) Thin films : Guided waves
(350.2460) Other areas of optics : Filters, interference
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: March 6, 2014
Revised Manuscript: April 30, 2014
Manuscript Accepted: May 1, 2014
Published: June 4, 2014

Simone Zanotto, Giorgio Biasiol, Lucia Sorba, and Alessandro Tredicucci, "Photonic bands and defect modes in metallo-dielectric photonic crystal slabs," J. Opt. Soc. Am. B 31, 1451-1455 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013). [CrossRef]
  3. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008). [CrossRef]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  5. M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005). [CrossRef]
  6. S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010). [CrossRef]
  7. L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004). [CrossRef]
  8. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009). [CrossRef]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003). [CrossRef]
  10. T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006). [CrossRef]
  11. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36, 3054–3056 (2011). [CrossRef]
  12. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1d to 2d structures,” Opt. Express 20, 13082–13090 (2012). [CrossRef]
  13. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011). [CrossRef]
  14. S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011). [CrossRef]
  15. S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008). [CrossRef]
  16. S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012). [CrossRef]
  17. D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E 69, 056603 (2004). [CrossRef]
  18. The presence of air above the metal can be neglected since the penetration depth in the metal is smaller than its thickness. In this paper, we assumed εM=−4000 with no imaginary part.
  19. The analysis of the f-dependence of spectral features and bandgap is not immediate, and the interested reader can refer to Refs. [23] and [30] for further details.
  20. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in tm polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  21. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003). [CrossRef]
  22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication (Oxford University, 2007).
  23. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006). [CrossRef]
  24. J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).
  25. J.-M. Manceau, S. Zanotto, and R. Colombelli, “Optical critical coupling into highly confining metal-insulator-metal resonators,” Appl. Phys. Lett. 103, 091110 (2013). [CrossRef]
  26. With these structures, a Q-factor as large as 100 can be attained without losing coupling efficiency. While not a large value in absolute terms, it is among the largest observed in mid-infrared photonic devices.
  27. H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008). [CrossRef]
  28. The proposed analysis disregards the coupling with light propagating out of the xz plane. It can be argued that, by implementing a defect mode in a square lattice, full control of the directionality around normal incidence can be attained.
  29. As for the photonic resonances of the sample without defect, this is attributed to sample nonplanarity and lithographic imperfections.
  30. S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited