OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1456–1464

Enhanced nonlinearity by H-bonded polymer–dye complex in liquid crystal for holographic gratings

Elena Ouskova, Andrii Pshenychnyi, Antoni Sánchez-Ferrer, Dariia Lysenko, Jaana Vapaavuori, and Matti Kaivola  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1456-1464 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have studied a new heterogeneous liquid-crystalline material where H-bonded polymer–azo-dye complexes are used as dopants to the liquid crystal (LC) bulk at a very low concentration. Double enhancement of the holographic gratings’ diffraction efficiency occurred in the complex-doped LC compared to dye-doped LC. The grating formation/relaxation processes in complex-doped LC showed anomalies that were explained by the presence of polymer with H bonds. The gratings appeared to be formed due to a change of both the absorption coefficient and refractive index. Using such complexes as dopants gives perspectives for tuning and control of the LC properties, and for possible optical applications.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(160.5335) Materials : Photosensitive materials

ToC Category:
Nonlinear Optics

Original Manuscript: March 24, 2014
Revised Manuscript: May 2, 2014
Manuscript Accepted: May 3, 2014
Published: June 5, 2014

Elena Ouskova, Andrii Pshenychnyi, Antoni Sánchez-Ferrer, Dariia Lysenko, Jaana Vapaavuori, and Matti Kaivola, "Enhanced nonlinearity by H-bonded polymer–dye complex in liquid crystal for holographic gratings," J. Opt. Soc. Am. B 31, 1456-1464 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992). [CrossRef]
  2. I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001). [CrossRef]
  3. I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).
  4. A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008). [CrossRef]
  5. L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008). [CrossRef]
  6. L. Lucchetti and F. Simoni, “Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red,” Phys. Rev. E 89, 032507 (2014). [CrossRef]
  7. E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010). [CrossRef]
  8. E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1, 1463–1470 (2011). [CrossRef]
  9. E. Ouskova and M. Kaivola, “Nonlinear optical response of self-orienting liquid crystal,” Opt. Mater. Express 2, 1056–1063 (2012). [CrossRef]
  10. A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013). [CrossRef]
  11. J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011). [CrossRef]
  12. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980). [CrossRef]
  13. W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123–134 (1967). [CrossRef]
  14. S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].
  15. P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University, 1996).
  16. R. J. Collier, C. B. Burkhardt, and L. H. Lin, Optical Holography (Academic, 1971), Section 8.5.
  17. L. Song, R. A. Lessard, and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990). [CrossRef]
  18. V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005). [CrossRef]
  19. M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt. 48, 393–396 (2009). [CrossRef]
  20. C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater. 7, 899–903 (1995). [CrossRef]
  21. I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008). [CrossRef]
  22. W. R. Brode, J. H. Gould, and G. M. Wyman, “The relation between the absorption spectra and the chemical constitution of dyes XXV. Phototropism and cis-trans isomerism in aromatic azo compounds,” J. Am. Chem. Soc. 74, 4641–4646 (1952). [CrossRef]
  23. A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers,” Macromol. Rapid Commun. 32, 672–678 (2011).
  24. H. M. D. Bandara and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809–1825 (2012). [CrossRef]
  25. S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999). [CrossRef]
  26. H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier Science, 2003).
  27. G. Granucci and M. Persico, “Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study,” Theor. Chem. Acc. 117, 1131–1143 (2007). [CrossRef]
  28. M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013). [CrossRef]
  29. C. H. Kwak and H. R. Yang, “Determinations of optical field induced nonlinearities in azo dye doped polymer film,” in Polymer Thin Films, A. A. Hashim, ed. (InTech, 2010), pp. 309–324.
  30. T. Fujino and T. Tahara, “Picosecond time-resolved Raman study of trans-azobenzene,” J. Phys. Chem. A 104, 4203–4210 (2000). [CrossRef]
  31. C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004). [CrossRef]
  32. I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998). [CrossRef]
  33. S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).
  34. D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys. 118, 3222–3232 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited