OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1476–1483

Photonic jet generated by spheroidal particle with Gaussian-beam illumination

Lu Han, Yiping Han, Gerard Gouesbet, Jiajie Wang, and Gerard Gréhan  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1476-1483 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001476


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within the framework of generalized Lorenz–Mie theory, the properties of three-dimensional photonic jets emerging from spheroidal particles illuminated by a focused Gaussian beam are studied. The intensity, focal distance, and transverse and longitudinal dimensions of a photonic jet depending on the ellipticity of the spheroidal particle are numerically investigated. The simulation results show that, by simply varying the ellipticity, it is possible to obtain localized photon fluxes having different power characteristics and spatial dimensions. This can be of interest for several applications, such as high-resolution (nanometer scale) optical sensors, subdiffraction-resolution optical virtual imaging, and ultradirectional optical antennas.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Scattering

History
Original Manuscript: February 21, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: May 2, 2014
Published: June 5, 2014

Citation
Lu Han, Yiping Han, Gerard Gouesbet, Jiajie Wang, and Gerard Gréhan, "Photonic jet generated by spheroidal particle with Gaussian-beam illumination," J. Opt. Soc. Am. B 31, 1476-1483 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1476


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004). [CrossRef]
  2. A. Itagi and W. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22, 2847–2858 (2005). [CrossRef]
  3. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008). [CrossRef]
  4. F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet,” Opt. Commun. 294, 351–360 (2013). [CrossRef]
  5. D. McCloskey, Y. P. Rakovich, and J. Donegan, “Controlling the properties of Photonic Jets,” in 12th International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–3.
  6. S. S. Stafeev and V. V. Kotlyar, “Elongated photonic nanojet from truncated cylindrical zone plate,” J. Phys. B 2012, 123872 (2012).
  7. D. Maděránková, I. Provazník, and K. Klepárník, “Numerical modeling of photonic nanojet behind dielectric microcylinder,” in Proceedings of World Congress on Medical Physics and Biomedical Engineering, O. Dossel and W. C. Schlegel, eds. (Springer, 2010), pp. 1135–1138.
  8. X. Li, Z. G. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005). [CrossRef]
  9. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30, 2641–2643 (2005). [CrossRef]
  10. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200–14212 (2008). [CrossRef]
  11. C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18, 16805–16812 (2010). [CrossRef]
  12. S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17, 3722–3731 (2009). [CrossRef]
  13. A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E (2009).
  14. H. X. Ding, L. L. Dai, and C. C. Yan, “Properties of the 3D photonic nanojet based on the refractive index of surroundings,” Chin. Opt. Lett. 8, 706–708 (2010). [CrossRef]
  15. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010). [CrossRef]
  16. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28, 1825–1830 (2011). [CrossRef]
  17. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41, 520–525 (2011).
  18. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Nonstationary photonic jet from dielectric microsphere,” J. Quant. Spectrosc. Radiat. Transfer 131, 146–152 (2013). [CrossRef]
  19. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Photonic jet shaping of mesoscale dielectric spherical particles resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013). [CrossRef]
  20. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29, 758–762 (2012). [CrossRef]
  21. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006). [CrossRef]
  22. L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105, 123512 (2009). [CrossRef]
  23. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008). [CrossRef]
  24. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, “Nanojets and directional emission in symmetric photonic molecules,” Opt. Express 15, 17343–17350 (2007). [CrossRef]
  25. D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20, 128–140 (2012). [CrossRef]
  26. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19, 7084–7093 (2011). [CrossRef]
  27. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).
  28. P. Ghenuche, H. Rigneault, and J. Wenger, “Photonic nanojet focusing for hollow-core photonic crystal fiber probes,” Appl. Opt. 51, 8637–8640 (2012). [CrossRef]
  29. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).
  30. H. Seidfaraji, M. Hasan, and J. J. Simpson, “A feasibility study of microjets applied to breast cancer detection,” in International Conference on Electromagnetics in Advanced Applications (IEEE, 2012), pp. 949–951.
  31. V. Yannopapas, “Photonic nanojets as three-dimensional optical atom traps: a theoretical study,” Opt. Commun. 285, 2952–2955 (2012). [CrossRef]
  32. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008). [CrossRef]
  33. S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92, 211102 (2008). [CrossRef]
  34. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007). [CrossRef]
  35. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008). [CrossRef]
  36. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007). [CrossRef]
  37. C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).
  38. J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008). [CrossRef]
  39. D. Gerard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26, 1473–1478 (2009). [CrossRef]
  40. S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.
  41. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009). [CrossRef]
  42. S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007). [CrossRef]
  43. H. Aouani, P. Schon, S. Brasselet, H. Rigneault, and J. Wenger, “Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres,” Biomed. Opt. Express 1, 1075–1083 (2010). [CrossRef]
  44. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011). [CrossRef]
  45. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008). [CrossRef]
  46. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Near-field scattering by dielectric spheroidal particles with sizes on the order the illuminating wavelength,” J. Opt. Soc. Am. B 27, 1221–1231 (2010). [CrossRef]
  47. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes,” Opt. Express 19, 16207–16222 (2011). [CrossRef]
  48. C.-Y. Liu, “Ultra-elongated photonic nanojets generated by a graded-index microellipsoid,” Prog. Electromagn. Res. Lett. 37, 153–165 (2013).
  49. G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).
  50. Y. Han and Z. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001). [CrossRef]
  51. Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002). [CrossRef]
  52. Y. Han and Z. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002). [CrossRef]
  53. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007). [CrossRef]
  54. G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011). [CrossRef]
  55. L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013). [CrossRef]
  56. C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).
  57. M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited