OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1494–1498

Photon statistics as a probe for weak measurements

Bertúlio de Lima Bernardo  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1494-1498 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001494


View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a framework to perform weak measurements in which photon statistics is employed as the measuring device. Specifically, we show that when a coherent state is utilized as the probe, as a result, a super-Poissonian statistics is obtained whose average number of photons and variance are strongly dependent on the weak effect that takes place in the interim between pre- and post-selection. These results shed new light on the study of weak measurements in what concerns the sensibility of the measurer.

© 2014 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: April 15, 2014
Revised Manuscript: May 3, 2014
Manuscript Accepted: May 5, 2014
Published: June 5, 2014

Citation
Bertúlio de Lima Bernardo, "Photon statistics as a probe for weak measurements," J. Opt. Soc. Am. B 31, 1494-1498 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
  2. J. von Neuman, Mathematical Foundations of Quantum Mechanics (Princeton University, 1955).
  3. A. G. Kofman, S. Ashhab, and F. Nori, “Nonperturbative theory of weak pre- and post-selected measurements,” Phys. Rep. 520, 43–133 (2012). [CrossRef]
  4. J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014). [CrossRef]
  5. J. S. Lundeen and K. J. Resch, “Practical measurement of joint weak values and their connection to the annihilation operator,” Phys. Lett. A 334, 337–344 (2005). [CrossRef]
  6. R. Jozsa, “Complex weak values in quantum measurements,” Phys. Rev. A 76, 044103 (2007). [CrossRef]
  7. K. J. Resch, “Amplifying a tiny optical effect,” Science 319, 733–734 (2008). [CrossRef]
  8. I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a ‘weak measurement’ of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989). [CrossRef]
  9. A. M. Steinberg, “How much time does a tunneling particle spend in the barrier region?” Phys. Rev. Lett. 74, 2405–2409 (1995). [CrossRef]
  10. J. Dressel, S. Agarwal, and A. N. Jordan, “Contextual values of observables in quantum measurements,” Phys. Rev. Lett. 104, 240401 (2010). [CrossRef]
  11. Y. Aharonov and L. Vaidman, “Properties of a quantum system during the time interval between two measurements,” Phys. Rev. A 41, 11–20 (1990). [CrossRef]
  12. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009). [CrossRef]
  13. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008). [CrossRef]
  14. M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O’Brien, A. G. White, and G. J. Pryde, “Violation of the Leggett-Garg inequality with weak measurements of photons,” Proc. Natl. Acad. Sci. USA 108, 1256–1261 (2011). [CrossRef]
  15. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011). [CrossRef]
  16. D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: a connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004). [CrossRef]
  17. N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, “Direct measurement of superluminal group velocity and signal velocity in an optical fiber,” Phys. Rev. Lett. 93, 203902 (2004). [CrossRef]
  18. K. Resch, J. Lundeen, and A. Steinberg, “Experimental realization of the quantum box problem,” Phys. Lett. A 324, 125–131 (2004). [CrossRef]
  19. S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011). [CrossRef]
  20. N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ‘weak value’,” Phys. Rev. Lett. 66, 1107–1110 (1991). [CrossRef]
  21. G. Puentes, N. Hermosa, and J. P. Torres, “Weak measurements with orbital-angular-momentum pointer states,” Phys. Rev. Lett. 109, 040401 (2012). [CrossRef]
  22. H. Kobayashi, G. Puentes, and Y. Shikano, “Extracting joint weak values from two-dimensional spatial displacements,” Phys. Rev. A 86, 053805 (2012). [CrossRef]
  23. O. S. M. Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” arXiv:1312.2981 (2013).
  24. N. Brunner and C. Simon, “Measuring small longitudinal phase shifts: weak measurements or standard interferometry?” Phys. Rev. Lett. 105, 010405 (2010). [CrossRef]
  25. X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013). [CrossRef]
  26. L. J. Salazar-Serrano, D. Janner, N. Brunner, V. Pruneri, and J. P. Torres, “Measurement of sub-pulse-width temporal delays via spectral interference induced by weak value amplification,” Phys. Rev. A 89, 012126 (2014). [CrossRef]
  27. I. Shomroni, O. Bechler, S. Rosenblum, and B. Dayan, “Demonstration of weak measurement based on atomic spontaneous emission,” Phys. Rev. Lett. 111, 023604 (2013). [CrossRef]
  28. A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011). [CrossRef]
  29. S. Wu and M. Zukowski, “Feasible optical weak measurements of complementary observables via a single Hamiltonian,” Phys. Rev. Lett. 108, 080403 (2012). [CrossRef]
  30. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963). [CrossRef]
  31. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1985).
  32. J. P. Gazeau, Coherent States in Quantum Mechanics (Wiley-VCH, 2009).
  33. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).
  34. M. Fox, Quantum Optics: An Introduction (Oxford University, 2006).
  35. In this case, we refer to pure states. For a discussion of weak measurements in the context of mixed states; see A. Di Lorenzo and J. C. Egues, “Weak measurement: effect of the detector dynamics,” Phys. Rev. A 77, 042108 (2008). [CrossRef]
  36. D. J. Starling, P. B. Dixon, N. S. Williams, A. N. Jordan, and J. C. Howell, “Continuous phase amplification with a Sagnac interferometer,” Phys. Rev. A 82, 011802(R) (2010). [CrossRef]
  37. R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P. Hyllus, L. Pezzé, and A. Smerzi, “Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation,” Phys. Rev. Lett. 107, 080504 (2011). [CrossRef]
  38. D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A 80, 041803(R) (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited