OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1516–1524

Electrically tunable Fabry–Perot lasing in nematic liquid crystal cells

Inge Nys, Jeroen Beeckman, and Kristiaan Neyts  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1516-1524 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Liquid crystal lasers have great potential as small-sized, low-cost, widely tunable lasers. In this paper, we report tunable lasing based on Fabry–Perot interference in nematic liquid crystal (NLC) cells with a low quality factor. The influence of the cell thickness on the laser performance is addressed in detail. Cells with and without an aluminum mirror as a back electrode were investigated, and the experimental results were compared with theory and simulations. Applying a small voltage over the NLC cell gave rise to a reorientation of the molecules. This enabled electrical tuning of the emission wavelength over more than 9 nm. Although the lasing threshold is higher than for cholesteric liquid crystal lasers, the Fabry–Perot type liquid crystal laser offers similar slope efficiency.

© 2014 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3600) Lasers and laser optics : Lasers, tunable
(140.7300) Lasers and laser optics : Visible lasers
(160.3710) Materials : Liquid crystals
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 3, 2014
Revised Manuscript: April 30, 2014
Manuscript Accepted: May 10, 2014
Published: June 11, 2014

Inge Nys, Jeroen Beeckman, and Kristiaan Neyts, "Electrically tunable Fabry–Perot lasing in nematic liquid crystal cells," J. Opt. Soc. Am. B 31, 1516-1524 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998). [CrossRef]
  2. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002). [CrossRef]
  3. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002). [CrossRef]
  4. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006). [CrossRef]
  5. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003). [CrossRef]
  6. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006). [CrossRef]
  7. C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).
  8. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006). [CrossRef]
  9. F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, and Z. Lv, “Polarization and polarization control of random lasers from dye-doped nematic liquid crystals,” Opt. Lett. 38, 1557–1559 (2013). [CrossRef]
  10. V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).
  11. G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011). [CrossRef]
  12. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005). [CrossRef]
  13. Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010). [CrossRef]
  14. J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011). [CrossRef]
  15. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003). [CrossRef]
  16. H. Yoshida, K. Tagashira, T. Kumagai, A. Fujii, and M. Ozaki, “Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers,” Opt. Express 18, 12562–12568 (2010). [CrossRef]
  17. H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010). [CrossRef]
  18. M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).
  19. M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005). [CrossRef]
  20. L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007). [CrossRef]
  21. D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011). [CrossRef]
  22. L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006). [CrossRef]
  23. L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19, 18558–18576 (2011). [CrossRef]
  24. L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013). [CrossRef]
  25. O. Svelto, Principles of Lasers (Springer, 2010).
  26. C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010). [CrossRef]
  27. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited