OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1525–1532

Heat transfer between micro- and nano-mechanical systems through optical channels

F. Farman and A. R. Bahrampour  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1525-1532 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a new mechanism of heat transfer is introduced. It is shown that, without emission and absorption of photons, light can operate as a channel of heat transfer between nano- or micro-mechanical oscillators. We consider the dynamics of two vibrating mirrors coupled through one optical cavity mode in an optomechanical system. It is shown that light mediates heat transfer between two micro-mirrors. When the detuning frequency of the mechanical resonators is low, fluctuations flow through the light channel from the high temperature vibrating mirror toward the low temperature one. This behavior is named the resonance heat transfer effect. The rate of heat flow between the mechanical resonators depends on the detuning frequency of mechanical resonators, heat bath temperatures, laser intensity, and optomechanical regime of operation. Heat transfer in good and bad cavity regimes of operation is investigated.

© 2014 Optical Society of America

OCIS Codes
(000.6850) General : Thermodynamics
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Quantum Optics

Original Manuscript: February 27, 2014
Revised Manuscript: May 4, 2014
Manuscript Accepted: May 4, 2014
Published: June 11, 2014

F. Farman and A. R. Bahrampour, "Heat transfer between micro- and nano-mechanical systems through optical channels," J. Opt. Soc. Am. B 31, 1525-1532 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bauerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006). [CrossRef]
  2. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef]
  3. M. Paternostro, S. Gigan, M. S. Kim, F. Blaser, H. R. Bohm, and M. Aspelmeyer, “Reconstructing the dynamics of a movable mirror in a detuned optical cavity,” New J. Phys. 8, 107 (2006). [CrossRef]
  4. D. Kleckner and D. Bouwmeester, “Sub-Kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006). [CrossRef]
  5. A. Schliesser, P. DelHaye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006). [CrossRef]
  6. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008). [CrossRef]
  7. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef]
  8. Y. S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009). [CrossRef]
  9. F. Marquardt, A. A. Clerk, and S. M. Girvin, “Quantum theory of optomechanical cooling,” J. Mod. Opt. 55, 3329–3338 (2008). [CrossRef]
  10. S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009). [CrossRef]
  11. F. Farman and A. R. Bahrampour, “Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators,” J. Opt. Soc. Am. B 30, 1898–1904 (2013). [CrossRef]
  12. D. Vitali, S. Mancini, and P. Tombesi, “Optomechanical scheme for the detection of weak impulsive forces,” Phys. Rev. A 64, 051401(R) (2001). [CrossRef]
  13. A. Buonanno, Y. Chen, and N. Mavalvala, “Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme,” Phys. Rev. D 67, 122005 (2003). [CrossRef]
  14. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002). [CrossRef]
  15. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A 68, 062317 (2003). [CrossRef]
  16. S. Pirandola, D. Vitali, P. Tombesi, and S. Lloyd, “Macroscopic entanglement by entanglement swapping,” Phys. Rev. Lett. 97, 150403 (2006). [CrossRef]
  17. S. Huang and G. S. Agarwal, “Entangling nano-mechanical oscillators in a ring cavity by feeding squeezed light,” New J. Phys. 11, 103044 (2009). [CrossRef]
  18. Y. Dan Wang and A. A. Clerk, “Using dark modes for high-fidelity optomechanical quantum state transfer,” New J. Phys. 14, 105010 (2012). [CrossRef]
  19. Y. D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012). [CrossRef]
  20. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  21. S. Huang and G. S. Agarwal, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803(R) (2010). [CrossRef]
  22. D. Vitali, S. Mancini, and P. Tombesi, “Stationary entanglement between two movable mirrors in a classically driven Fabry–Perot cavity,” J. Phys. A 40, 8055–8068 (2007). [CrossRef]
  23. D. Vitali and V. Giovannetti, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001). [CrossRef]
  24. A. Hurwitz, “On the conditions under which an equation has only roots with negative real part,” in Selected Papers on Mathematical Trends in Control Theory, R. Bellman and R. Kalaba, eds. (Dover, 1964).
  25. S. Huang and G. S. Agarwal, “Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity,” Phys. Rev. A 80, 033807 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited