OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1533–1538

Terahertz wave generation by plasmonic-enhanced difference-frequency generation

Yuanxun Ge, Jianjun Cao, Zhenhua Shen, Yuanlin Zheng, Xianfeng Chen, and Wenjie Wan  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1533-1538 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001533


View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an efficient and compact plasmonic surface-enhanced terahertz generation scheme based on nonlinear difference-frequency generation inside a metal–insulator–metal structure. Gold nanowire arrays are planted on top of the surface of a lithium niobate (LN) substrate with second-order nonlinearity to enhance both the nonlinear wavelength conversion and waveguide terahertz waves at the same time. Our numerical simulations show that our structures are capable of generating both tunable continuous and ultrafast-pulsed terahertz sources. We also discuss further improvements on the conversion efficiency by combining with Ti-diffusing LN waveguides.

© 2014 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(240.6680) Optics at surfaces : Surface plasmons
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 7, 2014
Revised Manuscript: April 30, 2014
Manuscript Accepted: May 3, 2014
Published: June 11, 2014

Citation
Yuanxun Ge, Jianjun Cao, Zhenhua Shen, Yuanlin Zheng, Xianfeng Chen, and Wenjie Wan, "Terahertz wave generation by plasmonic-enhanced difference-frequency generation," J. Opt. Soc. Am. B 31, 1533-1538 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Siegel, “THz instruments for space,” IEEE Trans. Antennas Propag. 55, 2957–2965 (2007). [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002). [CrossRef]
  3. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  4. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003). [CrossRef]
  5. E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001). [CrossRef]
  6. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  7. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005). [CrossRef]
  8. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007). [CrossRef]
  9. S. Kumar, Q. Hu, and J. L. Reno, “186  K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009). [CrossRef]
  10. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997). [CrossRef]
  11. P. U. Jepsen, R. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996). [CrossRef]
  12. J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. lett. 97, 103903 (2006). [CrossRef]
  13. T. Wang, S. Lin, Y. Lin, A. Chiang, and Y. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008). [CrossRef]
  14. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035  nm,” Opt. Express 15, 11706–11713 (2007). [CrossRef]
  15. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604–1610 (2006). [CrossRef]
  16. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010). [CrossRef]
  17. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009). [CrossRef]
  18. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  20. G. Ramakrishnan, N. Kumar, P. C. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20, 4067–4073 (2012). [CrossRef]
  21. B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007). [CrossRef]
  22. C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008). [CrossRef]
  23. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008). [CrossRef]
  24. D. Bosomworth, “The far infrared optical properties of LiNbO3,” Appl. Phys. Lett. 9, 330–331 (1966). [CrossRef]
  25. K. Suizu, T. Shibuya, T. Akiba, T. Tutui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008). [CrossRef]
  26. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010). [CrossRef]
  27. Y. Zhang, X. Zhang, T. Mei, and M. Fiddy, “Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases,” Opt. Express 18, 12213–12225 (2010). [CrossRef]
  28. Lumerical Computational Solutions Inc., “FDTD solutions,” https://www.lumerical.com/tcad-products/fdtd/ .
  29. R. W. Boyd, Nonlinear Optics (Academic, 2010), Chap. 1.
  30. H. Hirori, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011). [CrossRef]
  31. G. Xu, X. Mu, Y. J. Ding, and I. B. Zotova, “Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate,” Opt. Lett. 34, 995–997 (2009). [CrossRef]
  32. R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012). [CrossRef]
  33. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited