OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1539–1543

Engineering optical bistability in a multimaterial loop metasurface

Babak Memarzadeh and Hossein Mosallaei  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1539-1543 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of a multimaterial loop (MML) metasurface integrated with Kerr nonlinear material as the dielectric spacer layer is investigated comprehensively with the finite-difference time-domain method. Optical bistability is obtained by exciting the metasurface with a saw-tooth profile for its amplitude. Based on effects of coupling between the plasmonic loops on the performance of the MML metasurface, it is shown that there is a trade-off between the required input intensity for switching and the extinction ratio of the two states of the switch. Two distinct designs are proposed where in the second design, which has lower coupling, the extinction ratio is increased by a factor of 2 while the required intensity for switching is 13 times higher than that of the first design.

© 2014 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(160.3918) Materials : Metamaterials
(130.4815) Integrated optics : Optical switching devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: April 1, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 13, 2014
Published: June 11, 2014

Babak Memarzadeh and Hossein Mosallaei, "Engineering optical bistability in a multimaterial loop metasurface," J. Opt. Soc. Am. B 31, 1539-1543 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010). [CrossRef]
  2. R. Boyd, Nonlinear Optics (Academic, 2003).
  3. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012). [CrossRef]
  4. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  5. T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry–Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979). [CrossRef]
  6. M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003). [CrossRef]
  7. V. G. Arkhipkin and S. A. Myslivets, “All-optical transistor using a photonic-crystal cavity with an active Raman gain medium,” Phys. Rev. A 88, 033847 (2013). [CrossRef]
  8. B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, and A. R. Maleki Javan, “All-optical NOR gate based on nonlinear photonic crystal microring resonators,” J. Opt. Soc. Am. B 26, 1097–1102 (2009). [CrossRef]
  9. Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012). [CrossRef]
  10. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012). [CrossRef]
  11. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007). [CrossRef]
  12. P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010). [CrossRef]
  13. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010). [CrossRef]
  14. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011). [CrossRef]
  15. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2, 125–135 (2008). [CrossRef]
  16. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012). [CrossRef]
  17. J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010). [CrossRef]
  18. N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, “Plasmonic grating as a nonlinear converter-coupler,” Opt. Express 20, 1392–1405 (2012). [CrossRef]
  19. A. V. Krasavin, S. Randhawa, J.-S. Bouillard, J. Renger, R. Quidant, and A. V. Zayats, “Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry,” Opt. Express 19, 25222–25229 (2011). [CrossRef]
  20. B. Memarzadeh and H. Mosallaei, “Multimaterial loops as the building block for a functional metasurface,” J. Opt. Soc. Am. B 30, 1827–1834 (2013). [CrossRef]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  22. I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011). [CrossRef]
  23. H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited