OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1544–1554

Comparison of pulse compression methods using only a pulse shaper

Daniel E. Wilcox and Jennifer P. Ogilvie  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1544-1554 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001544


View Full Text Article

Enhanced HTML    Acrobat PDF (1328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral phase compensation is crucial in the production of ultrafast laser pulses. To produce very short pulses, it is necessary to correct higher-order phase terms beyond the typical second-order and third-order corrections. It is helpful to have a pulse shaper to perform the compression, and to use an integrated, deterministic pulse-shaper-only method for pulse compression and characterization. While several algorithms exist for this purpose, it is desirable to know which method is optimal. Using a computer simulation, we investigate the speed of several existing approaches in several typical pulse shaping cases. We also present and demonstrate experimentally a new method named Spectral Phase of Electric field by Analytic Reconstruction (SPEAR), a variant of the Chirp Reversal Technique (CRT). The chirp-scan method, CRT, and SPEAR are found to be the fastest methods to achieve a desired level of accuracy, for the cases investigated.

© 2014 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.0320) Ultrafast optics : Ultrafast optics
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: March 4, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: April 28, 2014
Published: June 11, 2014

Citation
Daniel E. Wilcox and Jennifer P. Ogilvie, "Comparison of pulse compression methods using only a pulse shaper," J. Opt. Soc. Am. B 31, 1544-1554 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007). [CrossRef]
  2. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993). [CrossRef]
  3. J. P. Ogilvie, D. Débarre, X. Solinas, J.-L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006). [CrossRef]
  4. I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003). [CrossRef]
  5. M. H. Brenner, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser,” Opt. Express 21, 17256–17264 (2013). [CrossRef]
  6. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003). [CrossRef]
  7. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009). [CrossRef]
  8. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008). [CrossRef]
  9. F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014). [CrossRef]
  10. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  11. J. J. Field, R. Carriles, K. E. Sheetz, E. V. Chandler, E. E. Hoover, S. E. Tillo, T. E. Hughes, A. W. Sylvester, D. Kleinfeld, and J. A. Squier, “Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation,” Opt. Express 18, 13661–13672 (2010). [CrossRef]
  12. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010). [CrossRef]
  13. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009). [CrossRef]
  14. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
  15. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004). [CrossRef]
  16. N. Forget, V. Crozatier, and T. Oksenhendler, “Pulse-measurement techniques using a single amplitude and phase spectral shaper,” J. Opt. Soc. Am. B 27, 742–756 (2010). [CrossRef]
  17. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993). [CrossRef]
  18. C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J.-P. Rousseau, P. Rousseau, J.-P. Chambaret, and F. Salin, “Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 24, 1644–1646 (1999). [CrossRef]
  19. D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, “Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses,” J. Opt. Soc. Am. B 12, 1955–1967 (1995). [CrossRef]
  20. M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, “The effects of noise on ultrashort-optical-pulse measurement using SPIDER,” Appl. Phys. B 70, S85–S93 (2000). [CrossRef]
  21. S. Yeremenko, A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, “Phase-amplitude retrieval: SHG FROG vs. SPIDER,” in Conference on Lasers and Electro-Optics (2000), pp. 476–477.
  22. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000). [CrossRef]
  23. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006). [CrossRef]
  24. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt. 46, 8394–8401 (2007). [CrossRef]
  25. D. E. Wilcox, F. D. Fuller, and J. P. Ogilvie, “Fast second-harmonic generation frequency-resolved optical gating using only a pulse shaper,” Opt. Lett. 38, 2980–2983 (2013). [CrossRef]
  26. J. Garduño Mejía, A. Greenaway, and D. Reid, “Designer femtosecond pulses using adaptive optics,” Opt. Express 11, 2030–2040 (2003). [CrossRef]
  27. D. Pestov, V. V. Lozovoy, and M. Dantus, “Single-beam shaper-based pulse characterization and compression using MIIPS sonogram,” Opt. Lett. 35, 1422–1424 (2010). [CrossRef]
  28. M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, and H. Crespo, “Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt. Express 20, 18732–18743 (2012). [CrossRef]
  29. V. Loriot, G. Gitzinger, and N. Forget, “Self-referenced characterization of femtosecond laser pulses by chirp scan,” Opt. Express 21, 24879–24893 (2013). [CrossRef]
  30. R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, 1973).
  31. C. Ridders, “A new algorithm for computing a single root of a real continuous function,” IEEE Trans. Circuits Syst. 26, 979–980 (1979). [CrossRef]
  32. The Scipy community, “Optimization and root finding (scipy.optimize),” http://docs.scipy.org/doc/scipy/reference/optimize.html .
  33. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50  fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000). [CrossRef]
  34. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22, 1494–1496 (1997). [CrossRef]
  35. CDGM, “CDGM Optical Glass Products Database,” http://www.cdgmgd.com/en/asp/ .
  36. D. E. Wilcox, “Pulse-shaping pulse-measurement simulations,” http://github.com/dewilcox/PulseshapingPulsemeasurementSimulations (2014).
  37. A. Comin, R. Ciesielski, G. Piredda, K. Donkers, and A. Hartschuh, “Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans,” J. Opt. Soc. Am. B 31, 1118–1125 (2014). [CrossRef]
  38. I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, and S. Kubota, “Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 16, 620–624 (1999). [CrossRef]
  39. R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization,” SIAM J. Sci. Comput. 16, 1190–1208 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited