OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1555–1560

Effect of metal complexation on the nonlinear optical response of a conjugated ligand

F. Khammar, A. P. Kerasidou, K. Iliopoulos, P. Savel, H. Akdas-Kilig, Y. Hamaizi, J.-L. Fillaut, and B. Sahraoui  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1555-1560 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001555


View Full Text Article

Enhanced HTML    Acrobat PDF (558 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic nonlinear optical materials are widely investigated materials for fabricating optoelectronic devices. Particularly organic π-conjugated systems as well as transition metal complex compounds are studied in this direction because of the strong electronic coupling between the ligand and the metal, their excellent chemical stability, and their rich photochemical and photophysical properties. In this work, comparative studies of the third-order nonlinear optical susceptibilities of a bipyridine ligand (4-(N,N-dibutylamino)-4-(5-ethynyl-2,2-bipyridine)-azobenzene (A) and of the corresponding heteroleptic ruthenium complex (Ru(bpy)2(La)(PF6)2 (B) (La signifies the ligand) are presented. The NLO properties were investigated by means of the Z-scan technique using a 30 ps mode-locked Nd-YVO4 laser at 532 nm with a repetition rate of 10 Hz. Our results show that the introduction of the metal in the organic complex results in a significant modification of the third-order nonlinear optical response.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 18, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: April 18, 2014
Published: June 11, 2014

Citation
F. Khammar, A. P. Kerasidou, K. Iliopoulos, P. Savel, H. Akdas-Kilig, Y. Hamaizi, J.-L. Fillaut, and B. Sahraoui, "Effect of metal complexation on the nonlinear optical response of a conjugated ligand," J. Opt. Soc. Am. B 31, 1555-1560 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011). [CrossRef]
  2. O. Maury and H. Le Bozec, “Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes,” Acc. Chem. Res. 38, 691–704 (2005). [CrossRef]
  3. K. Iliopoulos, A. El-Ghayoury, H. El. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012). [CrossRef]
  4. B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).
  5. S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000). [CrossRef]
  6. W. P. Griffith, Ruthenium Oxidation Complexes: Their Uses as Homogenous Organic Catalysts (Springer, 2010).
  7. L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).
  8. P. C. A. Bruijnincx and P. J. Sadler, “Controlling platinum, ruthenium and osmium reactivity for anticancer drug design,” Adv. Inorg. Chem. 61, 1–62 (2009).
  9. A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000). [CrossRef]
  10. A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013). [CrossRef]
  11. C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998). [CrossRef]
  12. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  13. P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011). [CrossRef]
  14. K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014). [CrossRef]
  15. J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007). [CrossRef]
  16. J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996). [CrossRef]
  17. J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997). [CrossRef]
  18. J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003). [CrossRef]
  19. K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010). [CrossRef]
  20. P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013). [CrossRef]
  21. T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006). [CrossRef]
  22. W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007). [CrossRef]
  23. K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002). [CrossRef]
  24. K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited