OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1568–1572

Ion–photon entanglement and Bell inequality violation with 138Ba+

Carolyn Auchter, Chen-Kuan Chou, Thomas W. Noel, and Boris B. Blinov  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1568-1572 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the demonstration of ion–photon entanglement and Bell inequality violation in a system of trapped Ba138+ ions. Entanglement between the Zeeman sublevels of the ground state of a single Ba138+ ion and the polarization state of a single 493 nm photon emitted by the ion with a fidelity of 0.84±0.01 was achieved, along with a Bell signal of 2.3, exceeding the classical limit of 2 by more than eight standard deviations. This system is a promising candidate for a loophole-free Bell inequality violation test using long-range ion–ion entanglement as the wavelengths of the transitions of Ba138+ are in the visible region and thus suitable for long-range transmission over fiber optic cable.

© 2014 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: February 20, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: May 7, 2014
Published: June 13, 2014

Carolyn Auchter, Chen-Kuan Chou, Thomas W. Noel, and Boris B. Blinov, "Ion–photon entanglement and Bell inequality violation with 138Ba+," J. Opt. Soc. Am. B 31, 1568-1572 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012). [CrossRef]
  2. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012). [CrossRef]
  3. G. Juska, V. Dimastrodonato, L. O. Mereni, A. Gocalinska, and E. Pelucchi, “Towards quantum-dot arrays of entangled photon emitters,” Nat. Photonics 7, 527–531 (2013). [CrossRef]
  4. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef]
  5. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008). [CrossRef]
  6. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012). [CrossRef]
  7. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010). [CrossRef]
  8. W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom-photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008). [CrossRef]
  9. L. Li, Y. O. Dudin, and A. Kuzmich, “Entanglement between light and an optical atomic excitation,” Nature 498, 466–469 (2013).
  10. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef]
  11. C. Eichler, C. Lang, J. M. Fink, J. Govenius, S. Filipp, and A. Wallraff, “Observation of entanglement between itinerant microwave photons and a superconducting qubit,” Phys. Rev. Lett. 109, 240501 (2012). [CrossRef]
  12. M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006). [CrossRef]
  13. A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, “Entangled macroscopic quantum states in two superconducting qubits,” Science 300, 1548–1550 (2003). [CrossRef]
  14. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007). [CrossRef]
  15. B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–157 (2004). [CrossRef]
  16. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstatter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012). [CrossRef]
  17. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large scale modular quantum computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014). [CrossRef]
  18. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  19. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
  20. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998). [CrossRef]
  21. M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “Experimental violation of a Bell’s inequality with efficient detection,” Nature 409, 791–794(2001). [CrossRef]
  22. M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. Woo Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013). [CrossRef]
  23. D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk, and C. Monroe, “Bell inequality violation with two remote atomic qubits,” Phys. Rev. Lett. 100, 150404 (2008). [CrossRef]
  24. G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011). [CrossRef]
  25. M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and J. M. Martinis, “Violation of Bell’s inequality in Josephson phase qubits,” Nature 461, 504–506 (2009). [CrossRef]
  26. Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, and H. Rauch, “Violation of a Bell-like inequality in single-neutron interferometry,” Nature 425, 45–48 (2003). [CrossRef]
  27. P. Walther, M. Aspelmeyer, K. J. Resch, and A. Zeilinger, “Experimental violation of a cluster state Bell inequality,” Phys. Rev. Lett. 95, 020403 (2005). [CrossRef]
  28. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]
  29. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996). [CrossRef]
  30. J. Gurell, E. Biémont, K. Blagoev, V. Fivet, P. Lundin, S. Mannervik, L.-O. Norlin, P. Quinet, D. Rostohar, P. Royen, and P. Schef, “Laser-probing measurements and calculations of lifetimes of the 5d2d32 and 5d2d52 metastable levels in Ba ii,” Phys. Rev. A 75, 052506 (2007). [CrossRef]
  31. T. Noel, M. R. Dietrich, N. Kurz, G. Shu, J. Wright, and B. B. Blinov, “Adiabatic passage in the presence of noise,” Phys. Rev. A 85, 023401 (2012). [CrossRef]
  32. C. Wunderlich, T. Hannemann, T. Krber, H. Hffner, C. Roos, W. Hnsel, R. Blatt, and F. Schmidt-Kaler, “Robust state preparation of a single trapped ion by adiabatic passage,” J. Mod. Opt. 54, 1541–1549 (2007). [CrossRef]
  33. E. H. Pinnington, R. W. Berends, and M. Lumsden, “Studies of laser-induced fluorescence in fast beams of sr+ and ba+ ions,” J. Phys. B 28, 2095–2103 (1995). [CrossRef]
  34. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
  35. C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free Bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003). [CrossRef]
  36. C.-K. Chou, G. Shu, T. Noel, J. Wright, R. Graham, and B. Blinov, “Trapping ions in a 2-pi parabolic mirror,” Bull. Am. Phys. Soc. 58, 157 (2013).
  37. B. Leng Chuah, N. C. Lewty, and M. D. Barrett, “State detection using coherent Raman repumping and two-color Raman transfers,” Phys. Rev. A 84, 013411 (2011). [CrossRef]
  38. L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110, 083603 (2013). [CrossRef]
  39. C. Monroe, Department of Physics, University of Maryland, 1117 John S. Toll Building 082, College Park, Maryland 20742, USA (personal communication, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited