OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1590–1594

Laser emission of a Nd-doped mixed tellurite and zinc oxide glass

M. J. V. Bell, V. Anjos, L. M. Moreira, R. F. Falci, L. R. P. Kassab, D. S. da Silva, J. L. Doualan, P. Camy, and R. Moncorgé  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1590-1594 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The present work reports the luminescence properties and the laser operation of a Nd3+-doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the framework of the Judd–Ofelt formalism and the results are used in conjunction with fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered F43/2I411/2 infrared laser transition around 1062.5 μm. Continuous-wave laser action is achieved for the first time with this bulk tellurite glass by pumping the sample inside a standard two-mirror laser cavity with different output couplers. A low-threshold pump power of 8 mW associated with a laser slope efficiency of 21% could be obtained for an output coupler transmission of 2.7%.

© 2014 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 21, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: April 29, 2014
Published: June 19, 2014

M. J. V. Bell, V. Anjos, L. M. Moreira, R. F. Falci, L. R. P. Kassab, D. S. da Silva, J. L. Doualan, P. Camy, and R. Moncorgé, "Laser emission of a Nd-doped mixed tellurite and zinc oxide glass," J. Opt. Soc. Am. B 31, 1590-1594 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Träger, ed., Handbook of Lasers and Optics (Springer, 2007), pp. 636–648.
  2. J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Ménard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, and R. Moncorgé, “Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions,” J. Opt. Soc. Am. B 30, 3018–3021 (2013). [CrossRef]
  3. J. C. Michel, D. Morin, and F. Auzel, “Propriétés spectroscopiques et effet laser d’un verre tellurite et d’un verre phosphate dopés en néodyme,” Rev. Phys. Appl. 13, 859–866 (1978). [CrossRef]
  4. A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fermamdez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21, 9298–9307 (2013). [CrossRef]
  5. H. Kalaycioglu, H. Cankaya, G. Ozen, L. Ovecoglu, and A. Sennaroglu, “Lasing at 1065  nm in bulk Nd3+-doped telluride–tungstate glass,” Opt. Commun. 281, 6056–6060 (2008). [CrossRef]
  6. I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007). [CrossRef]
  7. N. Lei, B. Xu, and Z. H. Jiang, “Ti–sapphire laser pumped Nd–tellurite glass laser,” Opt. Commun. 127, 263–265 (1996). [CrossRef]
  8. W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. J. Ttzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988). [CrossRef]
  9. J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, and Y. Silberberg, “1.3  μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994). [CrossRef]
  10. R. A. H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, 2001).
  11. R. R. Petrin, M. L. Kliewer, J. T. Beasley, R. C. Powell, I. D. Aggarwal, and R. C. Ginther, “Spectroscopy and laser operation of Nd:ZBAN glass,” IEEE J. Quantum Electron. 27, 1031–1038 (1991). [CrossRef]
  12. J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994). [CrossRef]
  13. J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses,” Opt. Express 16, 11894–11906 (2008). [CrossRef]
  14. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996). [CrossRef]
  15. D. F. de Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077  nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003). [CrossRef]
  16. J. Fernandez, I. Iparraguirre, R. Balda, J. Azkargorta, M. Voda, and J. M. Fernandez-Navarro, “Laser action and upconversion of Nd3+ in lead–niobium–germanate bulk glass,” Opt. Mater. 25, 185–191 (2004).
  17. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
  18. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+ doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
  19. M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123, 208–222 (1990). [CrossRef]
  20. L. R. P. Kassab, L. F. Freitas, T. A. A. de Assumpção, D. M. da Silva, and C. B. de Araújo, “Frequency upconversion properties of Ag: TeO2–ZnO nanocomposites codoped with Yb3+ and Tm3+ ions,” Appl. Phys. B 104, 1029–1034 (2011). [CrossRef]
  21. T. A. A. de Assumpção, M. E. Camilo, L. R. P. Kassab, A. S. L. Gomes, C. B. de Araújo, and N. U. Wetter, “Frequency upconversion properties of Tm3+ doped TeO2–ZnO glasses containing silver nanoparticles,” J. Alloys Compd. 536, S504–S506 (2012). [CrossRef]
  22. L. R. P. Kassab, R. A. Kobayashi, M. J. V. Bell, A. P. Carmo, and T. Catunda, “Thermo-optical parameters of tellurite glasses doped with Yb3+,” J. Phys. D Appl. Phys. 40, 4073–4077 (2007).
  23. A. P. Silva, A. P. Carmo, V. Anjos, M. J. V. Bell, L. R. P. Kassab, and R. A. Pinto, “Temperature coefficient of optical path of tellurite glasses doped with gold nanoparticles,” Opt. Mater. 34, 239–243 (2011).
  24. V. D. Del Cacho, A. L. Siarkowsi, N. Morimoto, H. V. Borges, and L. R. P. Kassab, “Fabrication and characterization of TeO2–ZnO rib waveguides,” ECS Transactions 31, 225–229 (2010).
  25. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  26. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  27. W. K. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. 10, 450–457 (1974). [CrossRef]
  28. A. A. Sidek, S. Rosmawati, Z. A. Talib, M. K. Halimah, and W. M. Daud, “Synthesis and optical properties of ZnO–TeO2 glass system,” Am. J. Appl. Sci. 6, 1489–1494 (2009). [CrossRef]
  29. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-levels lasers,” Phys. Lett. 20, 277–278 (1966). [CrossRef]
  30. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of Na3Ga2Li3F12:Cr3+,” J. Quantum Electron. 24, 1077–1099 (1988).
  31. R. Moncorgé, “Current topics in rare-earth lasers,” in Spectroscopic Properties of Rare-Earths in Optical Materials, G. Liu and B. Jacquier, eds., Springer Series in Materials Science (Springer, 2005), Chap. 6, pp. 320–378.
  32. J. S. Wang, D. P. Machewi, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19, 1448–1449 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited