OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1595–1599

Light scattering by nonlinear cylindrical multilayer structures

Ali Mirzaei, Andrey E. Miroshnichenko, Nina A. Zharova, and Ilya V. Shadrivov  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1595-1599 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001595


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study light scattering by cylindrical multilayer structures containing Kerr-type nonlinear materials. We develop a new semi-analytical method for solving such nonlinear problems by reducing the original 2D system by a 1D nonlinear Helmholtz equation. We apply our method for the case of wave scattering by the core-shell metal-dielectric nanowire and show that the nonlinearity allows us to control scattering cross section, which in the resonant regime demonstrates optical bistability. We compare our method with the finite-difference time-domain (FDTD) approach and find that the new approach is accurate and is 105 times faster and more numerically robust than the FDTD.

© 2014 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4360) Nonlinear optics : Nonlinear optics, devices
(290.4020) Scattering : Mie theory

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 8, 2014
Revised Manuscript: May 13, 2014
Manuscript Accepted: May 13, 2014
Published: June 19, 2014

Citation
Ali Mirzaei, Andrey E. Miroshnichenko, Nina A. Zharova, and Ilya V. Shadrivov, "Light scattering by nonlinear cylindrical multilayer structures," J. Opt. Soc. Am. B 31, 1595-1599 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Dorfmuller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010). [CrossRef]
  2. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012). [CrossRef]
  3. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010). [CrossRef]
  4. Y. Zhan, J. Zhao, C. Zhou, M. Alemayehu, Y. Li, and Y. Li, “Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core,” Opt. Express 20, 11506–11516 (2012). [CrossRef]
  5. T. J. Kempa, J. F. Cahoon, S. Kim, R. W. Day, D. C. Bell, H. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. USA 109, 1407–1412 (2012). [CrossRef]
  6. A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008). [CrossRef]
  7. A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013). [CrossRef]
  8. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010). [CrossRef]
  9. L. Schächter, Beam-wave Interaction in Periodic and Quasi-Periodic Structures (Springer, 2011).
  10. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  11. N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 02885 (2013). [CrossRef]
  12. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express 19, 7778–7789 (2011). [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics the Finite Difference Time Domain Method (Artech House, 2005).
  14. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A 13, 483–493 (1996). [CrossRef]
  15. C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21, 36–44 (2004). [CrossRef]
  16. M. A. Hasan, “Electromagnetic scattering from nonlinear anisotropic cylinders—part 1: fundamental frequency,” IEEE Trans. Antennas Propag. 38, 523–533 (1990). [CrossRef]
  17. S. Caorsi, A. Massa, and M. Pastorino, “Approximate solutions to the scattering by nonlinear isotropic dielectric cylinders of circular cross sections under TM illumination,” IEEE Trans. Antennas Propag. 43, 1262–1269 (1995).
  18. S. Caorsi, A. Massa, and M. Pastorino, “Bistatic scattering-width computation for weakly nonlinear dielectric cylinders of arbitrary inhomogeneous cross-section shapes under transverse-magnetic wave illumination,” J. Opt. Soc. Am. A 12, 2482–2490 (1995). [CrossRef]
  19. S. Caorsi, A. Massa, and M. Pastorino, “Rytov approximation: application to scattering by two-dimensional weakly nonlinear dielectrics,” J. Opt. Soc. Am. A 13, 509–516 (1996). [CrossRef]
  20. R. W. Boyd, Nonlinear Optics (Elsevier, 2008).
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  22. A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A 9, 745–748 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited