OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1600–1606

Strong coupling between localized and propagating surface plasmon modes in a noncentrosymmetric metallic photonic slab

Junxue Chen and Jigang Hu  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1600-1606 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the coupling behaviors between localized and propagating surface plasmon modes in a noncentrosymmetric structure consisting of an L-shaped metal nanoparticle array and a thick metal film, separated by a silica dielectric spacer layer. It is found that surface plasmon modes exhibit hybrid behaviors due to the noncentrosymmetry of the structure. The hybrid surface plasmon modes will interact with different-order localized plasmon modes in the nanoparticle in their spectrally overlapping regions. The strong coupling between the localized and propagating plasmon modes gives rise to the energy anticrossing behavior with large mode splitting. Furthermore, a narrow absorption branch is also observed between two anticrossing absorption branches, which is absent in the centrosymmetric system. The findings hold promise in applications such as photonic and energy conversion systems and the design of novel plasmonic nanodevices.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

Original Manuscript: March 24, 2014
Manuscript Accepted: May 14, 2014
Published: June 19, 2014

Junxue Chen and Jigang Hu, "Strong coupling between localized and propagating surface plasmon modes in a noncentrosymmetric metallic photonic slab," J. Opt. Soc. Am. B 31, 1600-1606 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Jain and M. A. Ei-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007). [CrossRef]
  2. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31, 1528–1530 (2006). [CrossRef]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]
  4. S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010). [CrossRef]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef]
  6. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  7. S. A. Maier, Plasmonics: Fundamentals and Application (Springer-Verlag, 2007).
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  9. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006). [CrossRef]
  10. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008). [CrossRef]
  11. D. Brunazzo, E. Descrovi, and O. J. Martin, “Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film,” Opt. Lett. 34, 1405–1407 (2009). [CrossRef]
  12. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21, 10251–10258 (2013). [CrossRef]
  13. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007). [CrossRef]
  14. J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009). [CrossRef]
  15. J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008). [CrossRef]
  16. H. Husu, J. Mäkitalo, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Particle plasmon resonances in L-shaped gold nanoparticles,” Opt. Express 18, 16601–16606 (2010). [CrossRef]
  17. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  18. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006). [CrossRef]
  19. T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008). [CrossRef]
  20. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009). [CrossRef]
  21. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003). [CrossRef]
  22. J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited