OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1642–1647

Shaping plasmonic light beams with near-field plasmonic holograms

Itai Epstein, Yigal Lilach, and Ady Arie  »View Author Affiliations


JOSA B, Vol. 31, Issue 7, pp. 1642-1647 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001642


View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new class of plasmonic holograms for the near field. These holograms provide complete control of the amplitude and phase of surface plasmon polaritons (SPPs), thereby enabling the generation of any desired plasmonic light beam. The scheme is based on a two-dimensional near-field plasmonic hologram, which couples the SPP from free space into the metal–dielectric interface, and also sets the attributes of the plasmonic beam. We demonstrate the concept for a wide variety of plasmonic beams with different qualities—in particular, “self-similar” Hermite–Gauss beams, “nondiffracting” cosine-Gauss beams, and “self-accelerating” Airy beams.

© 2014 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(140.3300) Lasers and laser optics : Laser beam shaping
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Holography

History
Original Manuscript: March 26, 2014
Revised Manuscript: May 21, 2014
Manuscript Accepted: May 21, 2014
Published: June 23, 2014

Citation
Itai Epstein, Yigal Lilach, and Ady Arie, "Shaping plasmonic light beams with near-field plasmonic holograms," J. Opt. Soc. Am. B 31, 1642-1647 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-7-1642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef]
  3. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011). [CrossRef]
  6. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  8. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  9. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008). [CrossRef]
  10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012). [CrossRef]
  11. J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013). [CrossRef]
  12. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010). [CrossRef]
  13. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011). [CrossRef]
  14. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011). [CrossRef]
  15. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011). [CrossRef]
  16. A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014). [CrossRef]
  17. I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112, 023903 (2014). [CrossRef]
  18. C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, and J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express 19, 19572–19581 (2011) [CrossRef]
  19. C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38, 905–907 (2013). [CrossRef]
  20. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012). [CrossRef]
  21. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  22. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966). [CrossRef]
  23. J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55, 599–601 (1967). [CrossRef]
  24. W. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979). [CrossRef]
  25. Y. Chen, J. Fu, and Z. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19, 23908–23920 (2011). [CrossRef]
  26. Y. Chen, M. Zhang, L. Gan, X. Wu, L. Sun, J. Liu, J. Wang, and Z. Li, “Holographic plasmonic lenses for surface plasmons with complex wavefront profile,” Opt. Express 21, 17558–17566 (2013). [CrossRef]
  27. J. J. Cowan, “Holography with standing surface plasma waves,” Opt. Commun. 12, 373–378 (1974). [CrossRef]
  28. S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351–3354 (1996). [CrossRef]
  29. M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011). [CrossRef]
  30. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012). [CrossRef]
  31. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012). [CrossRef]
  32. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004). [CrossRef]
  33. Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013). [CrossRef]
  34. J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013). [CrossRef]
  35. R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.
  36. C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012). [CrossRef]
  37. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
  38. A. Libster, I. Eptein, Y. Lilach, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. (submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited