OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1653–1659

Transmittance of a subwavelength aperture flanked by a finite groove array placed near the focus of a conventional lens

F. Villate-Guío, F. de León-Pérez, and L. Martín-Moreno  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1653-1659 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we study the optical response of 1D light harvesting structures that are illuminated by a conventional lens. Our theoretical study shows that high transmission efficiencies are obtained when the structure is placed near the focal plane of the lens. The considered structure is a finite slit-groove array (SGA) with a given number of grooves, which are symmetrically distributed with respect to a central slit. The SGA is nanopatterned on an opaque metallic film. It is found that a total transmittance of 80% is achieved even for a single slit when (1) Fabry–Perot-like modes are excited inside the slit and (2) the effective cross section of the aperture becomes of the order of the FWHM of the incident beam. A further enhancement of 8% is produced by the groove array. The optimal geometry for the groove array consists of a moderate number of grooves (4) at either side of the slit, separated by a distance of half the incident wavelength λ. Grooves should be deeper (with depth λ/4) than those typically reported for plane wave illumination in order to increase their individual scattering cross section.

© 2014 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(240.6690) Optics at surfaces : Surface waves
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: April 9, 2014
Revised Manuscript: May 14, 2014
Manuscript Accepted: May 14, 2014
Published: June 23, 2014

F. Villate-Guío, F. de León-Pérez, and L. Martín-Moreno, "Transmittance of a subwavelength aperture flanked by a finite groove array placed near the focus of a conventional lens," J. Opt. Soc. Am. B 31, 1653-1659 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002). [CrossRef]
  2. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  4. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  5. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005). [CrossRef]
  6. J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008). [CrossRef]
  7. T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  9. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,” Appl. Phys. Lett. 81, 4661–4663 (2002). [CrossRef]
  10. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef]
  11. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098–1100 (2004). [CrossRef]
  12. D. Thomas and H. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004). [CrossRef]
  13. O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007). [CrossRef]
  14. F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, “Optimal light harvesting structures at optical and infrared frequencies,” Opt. Express 20, 25441–25453 (2012). [CrossRef]
  15. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef]
  16. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  17. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef]
  18. I. Smolyaninov, Y.-J. Hung, and C. Davis, “Magnifying superlenses in the visible frequency range,” Science 315, 1699–1701 (2007). [CrossRef]
  19. C. Ma and Z. Liu, “A super resolution metalenses with phase compensation mechanism,” Appl. Phys. Lett. 96, 183103 (2010). [CrossRef]
  20. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
  21. S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003). [CrossRef]
  22. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005). [CrossRef]
  23. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
  24. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008). [CrossRef]
  25. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009). [CrossRef]
  26. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012). [CrossRef]
  27. P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014). [CrossRef]
  28. R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980). [CrossRef]
  29. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  30. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).
  31. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008). [CrossRef]
  32. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008). [CrossRef]
  33. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001). [CrossRef]
  34. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  35. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  37. C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000). [CrossRef]
  38. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005). [CrossRef]
  39. P. Lalanne, J. P. Hugonin, and C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  40. Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007). [CrossRef]
  41. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasi-periodic hole arrays,” Opt. Express 16, 9222–9238 (2008). [CrossRef]
  42. V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited