OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1698–1705

Optical bistability with hybrid silicon-plasmonic disk resonators

Odysseas Tsilipakos and Emmanouil E. Kriezis  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1698-1705 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1084 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical bistability with a hybrid silicon-plasmonic configuration consisting of a nonlinear traveling-wave (disk) resonator side-coupled with a bus waveguide is theoretically investigated. The nonlinear response is studied with a theoretical framework combining perturbation theory and temporal coupled-mode theory. For the CW case, a general closed-form expression is derived. The effect of the parameters entering in the expression on the bistability curve is thoroughly investigated, and the physical system is accordingly designed so as to exhibit minimum power threshold for bistability and maximum extinction ratio between bistable states. Finally, the temporal dynamics are assessed. The system can toggle between bistable states in approximately 5 ps and is thus suitable for ultrafast memory and switching applications.

© 2014 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.1450) Nonlinear optics : Bistability
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4320) Optical devices : Nonlinear optical devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

Original Manuscript: March 4, 2014
Revised Manuscript: May 31, 2014
Manuscript Accepted: June 2, 2014
Published: June 27, 2014

Odysseas Tsilipakos and Emmanouil E. Kriezis, "Optical bistability with hybrid silicon-plasmonic disk resonators," J. Opt. Soc. Am. B 31, 1698-1705 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
  2. O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 109, 073111 (2011). [CrossRef]
  3. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009). [CrossRef]
  4. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009). [CrossRef]
  5. C. Milián and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011). [CrossRef]
  6. A. Kriesch, D. Ploss, J. Wen, P. Banzer, and U. Peschel, “Nonlinear effects in subwavelength plasmonic directional couplers,” in CLEO: Conference on Lasers and Electro-Optics (2012), paper 6327055.
  7. A. Pitilakis and E. E. Kriezis, “Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization,” J. Opt. Soc. Am. B 30, 1954–1965 (2013). [CrossRef]
  8. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004). [CrossRef]
  9. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical theory of optical bistability in plasmonic nanoresonators,” J. Opt. Soc. Am. B 28, 2820–2826 (2011). [CrossRef]
  10. X. Wang, H. Jiang, J. Chen, P. Wang, Y. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express 19, 19415–19421 (2011). [CrossRef]
  11. G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011). [CrossRef]
  12. Y. Xiang, X. Zhang, W. Cai, L. Wang, C. Ying, and J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP Advances 3, 012106 (2013).
  13. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010). [CrossRef]
  14. A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Nonlinear effects in hybrid plasmonic waveguides,” in ICTON: 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper 6254436.
  15. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008). [CrossRef]
  16. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009). [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  18. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010). [CrossRef]
  19. O. Tsilipakos and E. E. Kriezis, “Microdisk resonator filters made of dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 3095–3098 (2010). [CrossRef]
  20. D. A. Ketzaki, O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators,” J. Appl. Phys. 114, 113107 (2013). [CrossRef]
  21. J. Bravo-Abad, S. Fan, S. Johnson, J. D. Joannopoulos, and M. Soljačić, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25, 2539–2546 (2007). [CrossRef]
  22. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002). [CrossRef]
  23. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003). [CrossRef]
  24. B. Maes, P. Bienstman, and R. Baets, “Switching in coupled nonlinear photonic-crystal resonators,” J. Opt. Soc. Am. B 22, 1778–1784 (2005). [CrossRef]
  25. O. Tsilipakos, A. Pitilakis, A. C. Tasolamprou, T. V. Yioultsis, and E. E. Kriezis, “Computational techniques for the analysis and design of dielectric-loaded plasmonic circuitry,” Opt. Quantum Electron. 42, 541–555 (2011). [CrossRef]
  26. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). [CrossRef]
  27. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  28. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  29. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003). [CrossRef]
  30. E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, 1985).
  31. B. L. Lawrence, M. Cha, J. U. Kang, W. Toruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, “Large purely refractive nonlinear index of single crystal P-toluene sulphonate (PTS) at 1600  nm,” Electron. Lett. 30, 447–448 (1994). [CrossRef]
  32. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Topics Quantum Electron. 8, 705–713 (2002).
  33. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2006). [CrossRef]
  34. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited