OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1706–1711

Grating-coupled excitation of the Uller–Zenneck surface wave in the optical regime

Muhammad Faryad and Akhlesh Lakhtakia  »View Author Affiliations

JOSA B, Vol. 31, Issue 7, pp. 1706-1711 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3833 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The excitation of the Uller–Zenneck surface wave in the optical regime was theoretically investigated for planar as well as periodically corrugated interfaces of two homogeneous, isotropic dielectric materials, with only one of the two being dissipative. A practical configuration involving the plane-wave illumination of a planar interface of the two partnering materials was found to be unsuitable for experimental confirmation of the existence of this surface wave. But, when the interface was periodically corrugated, the Uller–Zenneck wave was found to be excited over a wide range of angles of incidence. Air and crystalline silicon were identified as suitable partnering materials for experiments in the visible and ultraviolet spectral regimes.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.0310) Optics at surfaces : Thin films
(240.6690) Optics at surfaces : Surface waves
(310.2790) Thin films : Guided waves

ToC Category:
Optics at Surfaces

Original Manuscript: May 14, 2014
Manuscript Accepted: May 24, 2014
Published: June 30, 2014

Muhammad Faryad and Akhlesh Lakhtakia, "Grating-coupled excitation of the Uller–Zenneck surface wave in the optical regime," J. Opt. Soc. Am. B 31, 1706-1711 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. Lpz. 23, 846–866 (1907).
  2. K. Uller, “Beiträge zur Theorie der Elektromagnetischen Strahlung,” Ph.D. thesis (Universität Rostock, 1903), Chap. XIV.
  3. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (Wiley, 1991).
  4. A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. Lpz. 28, 665–736 (1909).
  5. A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).
  6. J. R. Wait, “The ancient and modern history of EM ground-wave propagation,” IEEE Antennas Propag. Mag. 40(5), 7–24 (1998). [CrossRef]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
  9. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  10. M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kužel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface waves,” Appl. Phys. Lett. 103, 221103 (2013). [CrossRef]
  11. V. I. Baĭbakov, V. N. Datsko, and Yu. V. Kistovich, “Experimental discovery of Zenneck’s surface electromagnetic waves,” Sov. Phys. Usp. 32, 378–379 (1989). [CrossRef]
  12. V. N. Datsko and A. A. Kopylov, “On surface electromagnetic waves,” Sov. Phys. Usp. 51, 101–102 (2008). [CrossRef]
  13. J. R. Wait, Electromagnetic Waves in Stratified Media, 2nd ed. (Pergamon, 1970).
  14. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).
  15. D. A. Hill and J. R. Wait, “Excitation of the Zenneck surface wave by a vertical aperture,” Radio Sci. 13, 969–977 (1978). [CrossRef]
  16. D. A. Hill and J. R. Wait, “On the excitation of the Zenneck surface wave over the ground at 10  MHz,” Ann. Télécommun. 35, 179–182 (1980).
  17. M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A 84, 033852 (2011). [CrossRef]
  18. J. Hendry, “Isolation of the Zenneck surface wave,” in Loughborough Antennas & Propagation Conference, Loughborough, UK, November8–9, 2010.
  19. D. P. Pulsifer, M. Faryad, A. Lakhtakia, A. S. Hall, and L. Liu, “Experimental excitation of the Dyakonov–Tamm wave in the grating-coupled configuration,” Opt. Lett. 39, 2125–2128 (2014). [CrossRef]
  20. Data on relative permittivity of crystalline silicon as a function of λ0 were downloaded from http://refractiveindex.info/legacy/?group=CRYSTALS&material=Si&option=Palik&wavelength=6.18 on May1, 2014.
  21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999).
  22. A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7, 4995–5007 (2013). [CrossRef]
  23. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  24. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited