OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1814–1821

YVO4:Er3+/Yb3+ phosphor for multifunctional applications

Manoj Kumar Mahata, Surya Prakash Tiwari, Shriparna Mukherjee, Kaushal Kumar, and Vineet Kumar Rai  »View Author Affiliations

JOSA B, Vol. 31, Issue 8, pp. 1814-1821 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This article reports luminescence studies on wet-chemical route prepared YVO4:Er3+/Yb3+ microdisc phosphor. The 980 nm laser excited upconversion (UC) emission intensity ratio of green to red bands is found too high to neglect the contribution from the red emission band, which is not observed normally in Er3+/Yb3+-doped materials. The red emission is also found absent in the downconversion emission under excitation at 316 nm. The variation of UC intensities with external temperature exhibits a well-fashioned pattern, which suggests that the H11/22 and S3/24 levels of Er3+ ion are thermally coupled. The YVO4:Er3+/Yb3+ phosphor has shown outstanding temperature-sensing behavior with maximum sensitivity of 0.0117K1 at 400 K. This material is also employed to develop a latent fingerprint in green color. Furthermore, the present phosphor could be useful for solar cell concentrators, drug delivery, and disease therapy applications.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: March 18, 2014
Manuscript Accepted: April 19, 2014
Published: July 10, 2014

Manoj Kumar Mahata, Surya Prakash Tiwari, Shriparna Mukherjee, Kaushal Kumar, and Vineet Kumar Rai, "YVO4:Er3+/Yb3+ phosphor for multifunctional applications," J. Opt. Soc. Am. B 31, 1814-1821 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002). [CrossRef]
  2. F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010). [CrossRef]
  3. T. Justel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem., Int. Ed. Engl. 37, 3084–3103 (1998). [CrossRef]
  4. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996). [CrossRef]
  5. A. K. Singh, S. Singh, D. Kumar, D. K. Rai, S. B. Rai, and K. Kumar, “Light-into-heat conversion in La2O3:Er3+-Yb3+ phosphor: an incandescent emission,” Opt. Lett. 37, 776–778 (2012). [CrossRef]
  6. S. K. Singh, K. Kumar, and S. B. Rai, “Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route,” Appl. Phys. B 94, 165–173 (2009). [CrossRef]
  7. D. K. Chatterjee and Y. Zhang, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine 3, 73–82 (2008). [CrossRef]
  8. N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009). [CrossRef]
  9. N. Kotov, “Bioimaging: the only way is up,” Nat. Mater. 10, 903–904 (2011). [CrossRef]
  10. S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011). [CrossRef]
  11. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010). [CrossRef]
  12. W. Ryba-Romanowski, “YVO4 crystals-puzzles and challenges,” Cryst. Res. Technol. 38, 225–236 (2003). [CrossRef]
  13. S. A. Miller, H. H. Caspers, and H. E. Rast, “Lattice vibrations of yttrium vanadate,” Phys. Rev. 168, 964–969 (1968). [CrossRef]
  14. X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004). [CrossRef]
  15. Y. F. Ruan, X. M. Wang, and T. Tsuboi, “Up-conversion in Er3+-doped LiNbO3 crystals,” J. Alloys Compd. 275-277, 246–249 (1998). [CrossRef]
  16. P. Huang, D. Chen, and Y. Wang, “Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals,” J. Alloys Compd. 509, 3375–3381 (2011). [CrossRef]
  17. G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008). [CrossRef]
  18. S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996). [CrossRef]
  19. Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012). [CrossRef]
  20. K. Riwotzki and M. Haase, “Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy),” J. Phys. Chem. B 102, 10129–10135 (1998). [CrossRef]
  21. H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008). [CrossRef]
  22. G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009). [CrossRef]
  23. J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013). [CrossRef]
  24. F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.
  25. J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997). [CrossRef]
  26. J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007). [CrossRef]
  27. S. Som and S. K. Sharma, “Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization,” J. Phys. D 45, 415102 (2012). [CrossRef]
  28. Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006). [CrossRef]
  29. A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. S 53, 18–22 (2007).
  30. V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011). [CrossRef]
  31. M. K. Mahata, K. Kumar, and V. K. Rai, “Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method,” Spectrochim. Acta, Part A 124, 285–291 (2014).
  32. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005). [CrossRef]
  33. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004). [CrossRef]
  34. M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, “Spectroscopic properties of Er3+ and Yb3+ doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997). [CrossRef]
  35. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003). [CrossRef]
  36. M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013). [CrossRef]
  37. M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011). [CrossRef]
  38. C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Fingerprint and Other Ridge Skin Impression (CRC Press, 2004).
  39. V. Singh, V. K. Rai, and M. Haase, “Intense green and red upconversion emission of Er3+, Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction,” J. Appl. Phys. 112, 063105 (2012). [CrossRef]
  40. D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012). [CrossRef]
  41. J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011). [CrossRef]
  42. Z. A. Timimi, M. S. Jaafar, and M. Z. M. Jafri, “Photodynamic therapy and green laser blood therapy,” Glob. J. Med. Res. 11, 22–27 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited