OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1822–1828

Analysis of silica-filled slot waveguides based on hyperbolic metamaterials

Evgeny G. Mironov, Liming Liu, Haroldo T. Hattori, and Richard M. De La Rue  »View Author Affiliations

JOSA B, Vol. 31, Issue 8, pp. 1822-1828 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have theoretically studied the optical properties of a filled slot metamaterial waveguide with lateral slab regions consisting of alternating silver–silica multilayers. It is shown that this geometry improves the subwavelength confinement of guided light and that the particular metal–dielectric ratio of 15nm/10nm results in substantially enhanced transmission, as compared with metal–dielectric–metal slot waveguides having similar dimensions.

© 2014 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 8, 2014
Revised Manuscript: June 3, 2014
Manuscript Accepted: June 3, 2014
Published: July 10, 2014

Evgeny G. Mironov, Liming Liu, Haroldo T. Hattori, and Richard M. De La Rue, "Analysis of silica-filled slot waveguides based on hyperbolic metamaterials," J. Opt. Soc. Am. B 31, 1822-1828 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Liu and C. Svensson, “Power consumption estimation in CMOS VLSI circuit,” IEEE J. Solid-State Circuits 29, 663–670 (1994). [CrossRef]
  2. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998). [CrossRef]
  3. T. Asano, M. Mochizuki, S. Noda, M. Okano, and M. Imada, “A channel drop filter using a single-defect in a 2-D photonic crystal slab: defect engineering with respect to polarization mode and ratio of emissions from upper to lower sides,” J. Lightwave Technol. 21, 1370–1376 (2003). [CrossRef]
  4. H. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100  μm photonic crystal Si optical modulators: spectral, athermal, and high speed performance,” IEEE J. Sel. Top. Quantum Electron. 19, 3400811 (2013). [CrossRef]
  5. H. T. Hattori, V. M. Schneider, and O. Lisboa, “Cantor set fiber Bragg grating,” J. Opt. Soc. Am. A 17, 1583–1589 (2000). [CrossRef]
  6. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures at near infrared wavelength,” Nature 383, 699–702 (1996). [CrossRef]
  7. H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, “In-plane coupling of light from InP-based photonic crystal band-edge lasers into single-mode waveguides,” IEEE J. Quantum Electron. 43, 279–286 (2007). [CrossRef]
  8. M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser: design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999). [CrossRef]
  9. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006). [CrossRef]
  10. H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt. 47, 2178–2185 (2008). [CrossRef]
  11. H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi single-mode operation,” IEEE Photon. Technol. Lett. 21, 359–361 (2009). [CrossRef]
  12. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009). [CrossRef]
  13. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  14. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  15. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013). [CrossRef]
  16. M. T. Hill, E. M. Marell, S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef]
  17. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008). [CrossRef]
  18. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009). [CrossRef]
  19. E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” J. Lightwave Technol. 31, 2459–2466 (2013). [CrossRef]
  20. H. J. Y. Allen, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 675–677 (2009). [CrossRef]
  21. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008). [CrossRef]
  22. J. Van Campehout, P. R. A. Binetti, P. R. Romeo, P. Regreny, C. Seassal, X. J. M. Leijtens, T. De Vries, Y. S. Oei, R. P. J. Van Veldhove, R. Nötzel, L. Di Cioccio, J. M. Fedeli, M. K. Smit, D. Van Thourhout, and R. Baets, “Low-footprint optical interconnect on an SOI chip through heterogeneous integration of InP-Based microdisk lasers and microdetectors,” IEEE Photon. Technol. Lett. 21, 522–524 (2009). [CrossRef]
  23. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006). [CrossRef]
  24. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008). [CrossRef]
  25. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32, 1495–1497 (2007). [CrossRef]
  26. Y. He, S. He, J. Gao, and X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B 29, 2559–2566 (2012). [CrossRef]
  27. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006). [CrossRef]
  28. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007). [CrossRef]
  29. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006). [CrossRef]
  30. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  31. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  32. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  33. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994). [CrossRef]
  34. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineering, 1999).
  35. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006). [CrossRef]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  37. COMSOL Multiphysics 4.3a [Online]. Available: http://www.comsol.com .
  38. Q. Xu, V. R. Almeida, P. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004). [CrossRef]
  39. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009). [CrossRef]
  40. Fullwave 6.0 RSOFT Design Group, 1999, [Online]. Available: http://www.rsoftdesign.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited