OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1829–1835

Inverse dispersion engineering in silicon waveguides

David Castelló-Lurbe, Victor Torres-Company, and Enrique Silvestre  »View Author Affiliations


JOSA B, Vol. 31, Issue 8, pp. 1829-1835 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001829


View Full Text Article

Enhanced HTML    Acrobat PDF (686 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical tool that searches an optimal cross section geometry of silicon-on-insulator waveguides given a target dispersion profile. The approach is a gradient-based multidimensional method whose efficiency resides on the simultaneous calculation of the propagation constant derivatives with respect to all geometrical parameters of the structure by using the waveguide mode distribution. The algorithm is compatible with regular mode solvers. As an illustrative example, using a silicon slot hybrid waveguide with 4 independent degrees of freedom, our approach finds ultra-flattened (either normal or anomalous) dispersion over 350 nm bandwidth in less than 10 iterations.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(130.2035) Integrated optics : Dispersion compensation devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 10, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: June 13, 2014
Published: July 10, 2014

Citation
David Castelló-Lurbe, Victor Torres-Company, and Enrique Silvestre, "Inverse dispersion engineering in silicon waveguides," J. Opt. Soc. Am. B 31, 1829-1835 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-8-1829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012). [CrossRef]
  2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef]
  3. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010). [CrossRef]
  4. X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012). [CrossRef]
  5. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef]
  6. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012). [CrossRef]
  7. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, and M. V. Andrés, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001). [CrossRef]
  8. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33, 2889–2891 (2008). [CrossRef]
  9. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006). [CrossRef]
  10. S. Mas, J. Caraquitena, J. V. Galán, P. Sanchis, and J. Martí, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express 18, 20839–20844 (2010). [CrossRef]
  11. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010). [CrossRef]
  12. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20, 1685–1690 (2012). [CrossRef]
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge, 2007).
  14. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011). [CrossRef]
  15. J. Riishede and O. Sigmund, “Inverse design of dispersion compensating optical fiber using topology optimization,” J. Opt. Soc. Am. B 25, 88–97 (2008). [CrossRef]
  16. E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, and A. Coves, “Differential toolbox to shape dispersion behavior in photonic crystal fibers,” Opt. Lett. 31, 1190–1192 (2006). [CrossRef]
  17. J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17, 9197–9203 (2009). [CrossRef]
  18. S. V. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane-wave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  20. D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982). [CrossRef]
  21. E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, and A. Ortigosa-Blanch, “Analytical evaluation of chromatic dispersion in photonic crystal fibers,” Opt. Lett. 30, 453–455 (2005). [CrossRef]
  22. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984). [CrossRef]
  23. L. Zhang, C. Bao, V. Singh, J. Mu, C. Yang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator,” Opt. Lett. 38, 5122–5125 (2013). [CrossRef]
  24. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010). [CrossRef]
  25. R. P. Feynman, “Forces in molecules,” Phys. Rev. 56, 340–343 (1939). [CrossRef]
  26. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002). [CrossRef]
  27. E. Silvestre, M. V. Andrés, and P. Andrés, “Biorthonormal-basis method for the vector description of optical-fiber modes,” J. Lightwave Technol. 16, 923–928 (1998). [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited