OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1853–1860

Modeling the reflectivity of plasmonic ultrasharp groove arrays: general direction of light incidence

Michael Odgaard, Mads G. Laursen, and Thomas Søndergaard  »View Author Affiliations

JOSA B, Vol. 31, Issue 8, pp. 1853-1860 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (683 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The reflectivity of ultrasharp periodic groove arrays in a gold surface is studied for a general direction of light incidence. This includes the case of incident light propagating along the grooves. Two efficient numerical modeling approaches are presented, namely, a simple and approximate stack matrix method (SMM), which uses the mode index of gap-plasmon polaritons as an effective index, and a rigorous Green’s function surface integral equation method (GFSIEM). The results of the highly simple SMM show remarkable similarity to the exact results obtained with the rigorous GFSIEM, which reinforces the idea that the physics of light absorption in such structures is dominated by the coupling of light into plasmons.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.2065) Diffraction and gratings : Effective medium theory
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: May 1, 2014
Revised Manuscript: June 12, 2014
Manuscript Accepted: June 12, 2014
Published: July 16, 2014

Michael Odgaard, Mads G. Laursen, and Thomas Søndergaard, "Modeling the reflectivity of plasmonic ultrasharp groove arrays: general direction of light incidence," J. Opt. Soc. Am. B 31, 1853-1860 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011). [CrossRef]
  2. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010). [CrossRef]
  3. A. H. Pfund, “The optical properties of metallic and crystalline powders,” J. Opt. Soc. Am. 23, 375–377 (1933). [CrossRef]
  4. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008). [CrossRef]
  5. M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013). [CrossRef]
  6. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013). [CrossRef]
  7. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012). [CrossRef]
  8. T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013). [CrossRef]
  9. E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013). [CrossRef]
  10. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  11. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  12. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002). [CrossRef]
  13. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006). [CrossRef]
  14. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010). [CrossRef]
  15. Y. Bao, Y. Hou, and Z. Wang, “Robust existence of the broadband optical transmission effect in multiple-layer gratings,” J. Opt. Soc. Am. B 31, 255–258 (2014). [CrossRef]
  16. W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments,” Phys. Rev. B 88, 155414 (2013). [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  18. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  19. D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  20. J. Liu, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory,” J. Opt. Soc. Am. A 18, 526–536 (2001). [CrossRef]
  21. J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008). [CrossRef]
  22. M. K. Choi, “Numerical calculation of light scattering from a layered sphere by the boundary-element method,” J. Opt. Soc. Am. A 18, 577–583 (2001). [CrossRef]
  23. N. Zavareian and R. Massudi, “Controllable trapping of nanowires using a symmetric slot waveguide,” J. Phys. Chem. C 117, 17159–17166 (2013). [CrossRef]
  24. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991). [CrossRef]
  25. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008). [CrossRef]
  26. F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).
  27. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef]
  28. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012). [CrossRef]
  29. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005). [CrossRef]
  30. S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A 23, 1757–1767 (2006). [CrossRef]
  31. F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theor. Tech. 58, 105–115 (2010). [CrossRef]
  32. A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011). [CrossRef]
  33. H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett. 100, 241104 (2012). [CrossRef]
  34. J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005). [CrossRef]
  35. M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014). [CrossRef]
  36. M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, 1986), Chap. 5.4A.
  37. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005). [CrossRef]
  38. T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007). [CrossRef]
  39. T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18, 26245–26258 (2010). [CrossRef]
  40. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012). [CrossRef]
  41. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995), Chap. 8.
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited