Ab initio investigation of lasing thresholds in photonic molecules |
JOSA B, Vol. 31, Issue 8, pp. 1867-1873 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001867
Enhanced HTML Acrobat PDF (626 KB)
Abstract
We investigate lasing thresholds in a representative photonic molecule composed of two coupled active cylinders of slightly different radii. Specifically, we use the recently formulated steady-state ab initio laser theory (SALT) to assess the effect of the underlying gain transition on lasing frequencies and thresholds. We find that the order in which modes lase can be modified by choosing suitable combinations of the gain center frequency and linewidth, a result that cannot be obtained using the conventional approach of quasi-bound modes. The impact of the gain transition center on the lasing frequencies, the frequency pulling effect, is also quantified.
© 2014 Optical Society of America
OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators
ToC Category:
Lasers and Laser Optics
History
Original Manuscript: April 23, 2014
Manuscript Accepted: June 8, 2014
Published: July 17, 2014
Citation
Denis Gagnon, Joey Dumont, Jean-Luc Déziel, and Louis J. Dubé, "Ab initio investigation of lasing thresholds in photonic molecules," J. Opt. Soc. Am. B 31, 1867-1873 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-8-1867
Sort: Year | Journal | Reset
References
- Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photon. Rev. 4, 179–191 (2010). [CrossRef]
- S. V. Boriskina, Photonic Molecules and Spectral Engineering, Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), Chap. 16, pp. 393–421.
- G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in 10th Annual Meeting IEEE Conference Proceedings of the Lasers and Electro-Optics Society, LEOS ‘97 (IEEE, 1997), p. 165.
- S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B 23, 1565–1573 (2006). [CrossRef]
- C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007). [CrossRef]
- F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
- C. Wang and C. P. Search, “Nonlinearly enhanced refractive index sensing in coupled optical microresonators,” Opt. Lett. 39, 26–29 (2014). [CrossRef]
- A. Imamoglu, Quantum Computation Using Quantum Dot Spins and Microcavities (Wiley, 2005), Chap. 14, pp. 217–227.
- P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
- C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998). [CrossRef]
- A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005). [CrossRef]
- S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 71–77 (2006). [CrossRef]
- B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014). [CrossRef]
- J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission,” Phys. Rev. A 79, 053858 (2009). [CrossRef]
- M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012). [CrossRef]
- W. D. Heiss, “The physics of exceptional points,” J. Phys. A 45, 444016 (2012). [CrossRef]
- E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006). [CrossRef]
- E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011). [CrossRef]
- E. I. Smotrova and A. I. Nosich, “Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes,” Opt. Lett. 38, 2059–2061 (2013). [CrossRef]
- S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005). [CrossRef]
- T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011). [CrossRef]
- L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010). [CrossRef]
- L. Ge, “Steady-state ab initio laser theory and its applications in random and complex media,” Ph.D. dissertation (Yale University, 2010).
- Since ω=ck, we will refer generically to both quantities as eigenfrequencies.
- A. E. Siegman, Lasers (University Science Books, 1986).
- H. G. Schwefel and C. G. Poulton, “An improved method for calculating resonances of multiple dielectric disks arbitrarily positioned in the plane,” Opt. Express 17, 13178–13186 (2009). [CrossRef]
- J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011). [CrossRef]
- We use the denomination GLMT in accordance with [29] to mean “theories dealing with the interaction between electromagnetic arbitrary shaped beams and a regular particle, allowing one to solve the problem by using the method of separation of variables.” However, as a matter of historical precision, it could be argued that a theory, dealing specifically with the scattering by many cylinders, should be called “generalized Rayleigh theory” in honor of the first calculation of scattering by one single cylinder by Rayleigh [45].
- G. Gouesbet and J. A. Lock, “List of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus [Invited],” Appl. Opt. 52, 897–916 (2013). [CrossRef]
- A. Z. Elsherbeni and A. A. Kishk, “Modeling of cylindrical objects by circular dielectric and conducting cylinders,” IEEE Trans. Antennas Propag. 40, 96–99 (1992). [CrossRef]
- D. Gagnon, J. Dumont, and L. J. Dubé, “Beam shaping using genetically optimized two-dimensional photonic crystals,” J. Opt. Soc. Am. A 29, 2673–2678 (2012). [CrossRef]
- D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective optimization in integrated photonics design,” Opt. Lett. 38, 2181–2184 (2013). [CrossRef]
- S. M. Raeis-Zadeh and S. Safavi-Naeini, “Multipole-based modal analysis of gate-defined quantum dots in graphene,” Eur. Phys. J. B 86, 1–7 (2013). [CrossRef]
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).
- S. Nojima, “Theoretical analysis of feedback mechanisms of two-dimensional finite-sized photonic-crystal lasers,” J. Appl. Phys. 98, 043102 (2005). [CrossRef]
- D. M. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich, “Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires,” Plasmonics 9, 389–407 (2014). [CrossRef]
- A further technical aspect of the implementation should be noted. Although we have not encountered any instabilities in our calculations, it should be acknowledged that for high accuracy work, Eqs. (12) and (13) are not well suited (exponential decay or growth of Tll′nn′ with the indices l and l′). This difficulty has been recognized before [17] and solved generally in [36].
- J.-B. Shim and J. Wiersig, “Semiclassical evaluation of frequency splittings in coupled optical microdisks,” Opt. Express 21, 24240–24253 (2013). [CrossRef]
- L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895–16902 (2008). [CrossRef]
- G. Painchaud-April, J. Dumont, D. Gagnon, and L. J. Dubé, “S and Q matrices reloaded: applications to open, inhomogeneous, and complex cavities,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–4.
- S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).
- C. Sanderson, “Armadillo: an open source C++ linear algebra library for fast prototyping and computationally intensive experiments,” Technical Report (NICTA, 2010).
- P. Ramachandran and G. Varoquaux, “Mayavi: 3D visualization of scientific data,” Comput. Sci. Eng. 13, 40–51 (2011). [CrossRef]
- M. Geissbuehler and T. Lasser, “How to display data by color schemes compatible with red-green color perception deficiencies,” Opt. Express 21, 9862–9874 (2013). [CrossRef]
- Rayleigh, “On the electromagnetic theory of light,” Philos. Mag. 12(73) 81–101 (1881). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.