OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1948–1953

Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber

Y. Y. Lee, E. S. Kang, K. H. Jung, J. W. Lee, and D. Ahn  »View Author Affiliations

JOSA B, Vol. 31, Issue 8, pp. 1948-1953 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An elliptic cylindrical omnidirectional light absorber forming a pseudo-optical black hole is studied both analytically and numerically. The conditions for permittivity tensors to trap optical rays are obtained from semiclassical analysis of the ray optic Hamiltonian. The dispersive finite-difference time-domain method is used to study the performance of these light-absorbing structures numerically. It is found that the permittivity of the structure in the form (1/sinhuu)(a/r)n traps the light ray efficiently into the elliptic absorber for n2, where u is the radial elliptic coordinate and a is the focal distance.

© 2014 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(230.0230) Optical devices : Optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: March 18, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: June 11, 2014
Published: July 29, 2014

Y. Y. Lee, E. S. Kang, K. H. Jung, J. W. Lee, and D. Ahn, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber," J. Opt. Soc. Am. B 31, 1948-1953 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  3. D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  4. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006). [CrossRef]
  5. D. Ahn, “Calculation of permittivity tensors for invisibility devices by effective medium approach in general relativity,” J. Mod. Opt. 58, 700–710 (2011). [CrossRef]
  6. Y. Y. Lee and D. Ahn, “Dispersive full-wave finite-difference time-domain analysis of the bipolar cylindrical cloak based on the effective medium approach,” J. Opt. Soc. Am. B 30, 140–148 (2013). [CrossRef]
  7. V. G. Vaselago, “The electrodynamics of substances with simultaneous negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  9. T. G. Mackay, A. Lakhtakia, and S. Setiawan, “Gravitation and electromagnetic wave propagation with negative phase velocity,” New J. Phys. 7, 75 (2005). [CrossRef]
  10. T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
  11. M. W. McCall, “On negative refraction in classical vacuum,” J. Mod. Opt. 54, 119–128 (2007). [CrossRef]
  12. M. W. McCall, “Classical gravity does not refract negatively,” Phys. Rev. Lett. 98, 91102 (2007). [CrossRef]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of hyperlens,” J. Opt. Soc. Am. A 24, A52–A59 (2007). [CrossRef]
  14. W. Wang, L. Lin, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Electromagnetic concentrators with reduced material parameters based on coordinate transformation,” Opt. Express 16, 11431–11437 (2008). [CrossRef]
  15. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009). [CrossRef]
  16. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). [CrossRef]
  17. C. Argyropoulous, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B 27, 2020–2025 (2010). [CrossRef]
  18. Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010). [CrossRef]
  19. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010). [CrossRef]
  20. A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express 18, 16646–16662 (2010). [CrossRef]
  21. H.-W. Wang and L.-W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011). [CrossRef]
  22. C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013). [CrossRef]
  23. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012). [CrossRef]
  24. I. S. Gradshteyn and I. M. Ryzhil, “Indefinite integrals of elementary functions,” in Table of Integrals, Series and Products (Academic, 2007), pp. 63–246.
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 1995).
  26. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited